

FTIR Characterization of Metal-Loaded Zeolites

Jürg Baumann, Robert Beer, and Gion Calzaferri*

Institute for Inorganic and Physical Chemistry, University of Berne, CH-3000 Bern 9, Switzerland

Abstract. FTIR transmission spectra of self-supporting zeolite wafers of Na₁₂A (Linde 4A), Na_{3.6}Ca_{4.2}A (Linde 5A) and Ag_{11.8}Na_{0.2}A in the range of 20 to 13 500 cm⁻¹ are reported. Reduction of Ag⁺ by H₂ is probed directly in the FAR IR and indirectly by adsorption of CO and CO₂.

Key words: infrared spectroscopy, FAR IR, silver zeolites, photochemistry, carbon monoxide.

Infrared spectroscopy has been extensively used for characterizing clay minerals and zeolites [1]. Our interest in FTIR spectroscopy of metalloaded zeolites is the detailed understanding of reactions such as

$$M^{n+} + \text{Red} \xrightarrow{hv} M^{(n-1)+} + Ox,$$

 $M^{(n-1)+} + X \rightarrow [M^{(n-1)+} \cdots X]$ [2]

with $M^{n+} = Cu^{2+}$, Cu^{+} , Ag^{+} and $X = N_2$, H_2O , CO, CO_2 , H_2 , D_2 .

A home-built high vacuum cell attached to the external port of a Bomem DA3 FTIR instrument is used for in-situ studies. Three self-supporting wafers of 15 to 20 μ m thickness can be simultaneously evacuated to 10^{-4} Pa, heated to 500° C, cooled below ambient temperature, exposed to gases and illuminated with visible or UV light for photochemical investigations.

In Fig. 1 we show the transmission spectra of Na₁₂A (Linde 4A), Na_{3.6}Ca_{4.2}A (Linde 5A) and Ag_{11.8}Na_{0.2}A. Water is still present as is seen from the broad band around 3500 cm⁻¹ and the sharp feature at 1640 cm⁻¹. Lattice vibrations appear between 250 and 1200 cm⁻¹ while the regions from 1200 to 1600 and below 250 cm⁻¹ [3] are clearly cation dependent. The near IR is included to demonstrate that transmission spectra can be obtained even in this region despite large scattering losses.

The Ag^+ ions in the zeolite can be reduced by H_2 , thus generating finely dispersed Ag^0 atoms and clusters. We observed that upon admittance of D_2

^{*} To whom correspondence should be addressed

J. Baumann et al.

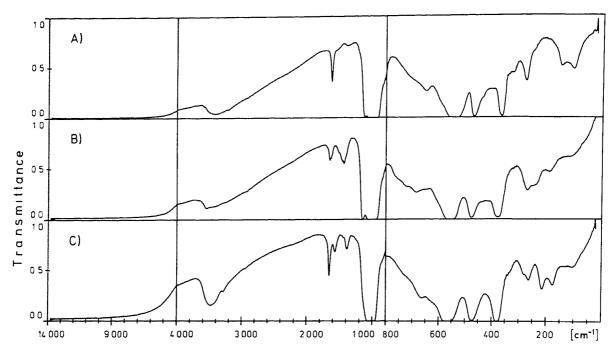


Fig. 1. Transmission spectra of self-supporting wafers of A: Ag_{11.8}Na_{0.2}A, B: Na_{3.6}Ca_{4.2}A (Linde 5A) and C: Na₁₂A (Linde 4A), evacuated to 2.6×10^{-4} Pa for 12 h at 25°C

the zeolitic water is slowly replaced by HDO and D_2O , but only if the zeolite contains Ag^+ . D_2 and hence H_2 adsorption is therefore dissociative and occurs at Ag^+ ions in the zeolite. In the FAR IR at least one new absorption band at 196 cm⁻¹ appears upon strongly reducing $Ag_{11.8}Na_{0.2}A$.

It is known from studies with Ag⁺ zeolite Y that CO is a useful label to probe the oxidation state of the silver in the zeolite since it adsorbs selec-

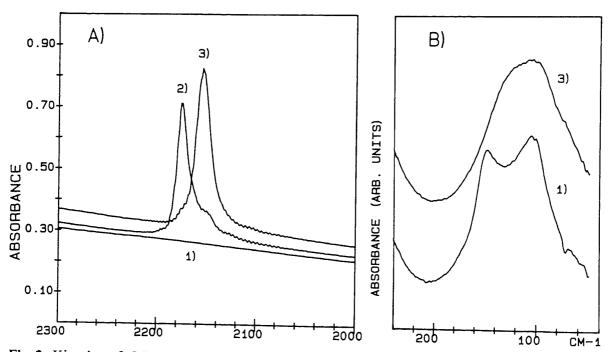


Fig. 2. Kinetics of CO adsorption on A: Ag_{4.3}Na_{7.7}A and B: Ag_{11.8}Na_{0.2}A. Curves 2 and 3 were measured under $1.3 \cdot 10^4$ Pa CO atmosphere and absorptions due to gaseous CO are properly compensated; I: evacuation at 25°C; exposure to $1.3 \cdot 10^4$ Pa CO at 25°C for 2: 25 min and 3: 4 h

tively on Ag⁺ [4]. This behaviour has been confirmed with Ag⁺ zeolite A at different degrees of reduction. In addition, the CO absorption band which is located at 2174 cm⁻¹ in the unreduced zeolite develops into a composite of several bands after H₂ treatment, indicating that reduction of the zeolite creates additional and distinguishable sites for CO adsorption. In Fig. 2A we present evidence that CO adsorption to equilibrium is a slow process, possibly involving diffusion of Ag⁺ to new sites. Within 4 h of CO exposure a shift of the CO absorption frequency from 2174 to 2153 cm⁻¹ is observed which is fully reversible on evacuation. Fig. 2B shows the change of the two Ag⁺ specific bands at 148 and 105 cm⁻¹ which merge into one broad band upon CO adsorption.

In contrast to CO, the adsorption capacity of silver zeolite A for CO₂ increases with reduction degree up to a maximum and falls off only at highly reduced samples.

Acknowledgement. This paper is part of project NEFF 329 financed by the Schweizerischer Nationaler Energieforschungsfonds and of Project NF 2.025-0.86 financed by the Schweizerischer Nationalfonds zur Förderung der wissenschaftlichen Forschung. Portland Zementfabrik Laufen is gratefully acknowledged for providing the quartz beamsplitter.

References

- [1] E. M. Flanigen, in: Zeolite Chemistry and Catalysis (J. A. Rabo, ed.), (ACS Monograph, Vol. 171), American Chemical Society, Washington, DC, 1976, p. 80.
- [2] G. Calzaferri, St. Hug, Th. Hugentobler, B. Sulzberger, J. Photochem. 1984, 26, 109; G. Calzaferri, W. Spahni, J. Photochem. 1986, 32, 151.
- [3] M. D. Baker, G. A. Ozin, J. Godber, Catal. Rev.-Sci. Eng. 1985, 27, 591.
- [4] H. Beyer, P. A. Jacobs, J. B. Uytterhoeven, J. Chem. Soc. Faraday I 1976, 72, 674.

Received August 28, 1987. Revision October 10, 1987.