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Normal coordinate analysis of HgSi;O,,
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Abstract—Normal coordinate analysis of the fundamental vibrations of HgSigO |, has been carried out. Because
of the octahedral symmetry, the 78 vibrational degrees of freedom lead to 33 different vibrations, six of which
are infrared active, 13 are Raman active and 14 are inactive. From the internal coordinates one gets 116
symmetry coordinates. We describe a straightforward method for determining the internal symmetry coordi-
nates of any molecular system. Internal coordinates, symmetry force constants, the full set of orthonormal
symmetry coordinates as well as the 38 redundant orthonormal symmetry coordinates of HgSizO,, are
tabulated. The potential energy distribution analysis shows that most of the fundamental vibrations can be very
well interpreted in terms of the internal vibrations v(Si~H), v(Si-0), 6(Si-H), 6(0-Si-0) and 6(Si-O-Si)
which makes it easy to compare them with vibrations observed in other silsesquioxanes and similar silicon
compounds.

INTRODUCTION

THE octa-(silsesquioxane) HSizO, is the smallest member of the oligomeric (HSiO4, ),
n=38, 10, 12, 14, 16 and 18 molecules, all of them having nearly spherical shape. They can
be synthesized by hydrolytic condensation of HSiCl; in acidic medium [1] and separated
by size-exclusion chromatography [2]. The octahedral structure of H,SigO,, was first
determined by LArsson [3] and later by DAY et al. [4]. It was found that its silicon—
oxygen skeleton is about the same as in (CHj;)gSigOy,. The i.r. spectrum of HgSizOy,, a
molecule which possesses 78 vibrational degrees of freedom, is very simple. Between
4000 and 40 cm™! it consists of six fundamental i.r. absorptions. The Raman spectrum
which is slightly more complicated consists of 13 fundamental vibrations. Provisional
assignment of the i.r. spectrum has been given previously [5]. The high symmetry of this
molecule makes it very attractive to carry out a complete normal coordinate analysis in
terms of symmetry coordinates. This analysis is the basis for other interesting studies on
XSig0 ), molecules and opens the way for quantitatively investigating the higher
members of the oligomeric (HSiO;),), molecules. The normal coordinate analysis for
cubane [6] can be used as a guide to introduce the internal coordinates. As we shall see,
however, H;SizO,, is more complicated, so that correct orientation of the degenerate
symmetry coordinates and elimination of redundant coordinates demands a systematic
procedure. To generate the symmetry coordinates, this means the coordinates in terms
of which the secular equation is factored to the maximum extent made possible by the
symmetry [7], we apply a procedure described by Gussont and Zersi [8], followed by
some transformations described in this paper.

HgSigO,, has some resemblance to the double four ring (D4R) found in A-type
zeolites. Infrared spectroscopy has provided very high quality information on zeolites, see
Ref. [9] and references cited therein for examples. It is, however, in general very difficult
to obtain a physical reliable force constant set for the zeolite framework. An interesting
pseudo lattice study of the D4R unit has recently been carried out with the result that
most of the calculated frequencies are in good agreement with the vibrational spectra in
the 1200-250 cm™' region [10]. Understanding the fundamental vibrations of the isolated
(HSiO3/; ), molecules will help in such studies to classify modes which can be described as
internal-coordinate frequencies and to distinguish them from modes which have to be
treated as delocalized vibrations [11]. We therefore analyse the fundamental vibrations
in terms of internal modes, namely v(Si-H), v(Si~0), 6(Si—H), 6(O-Si-0) and 6(Si-O-
S8i) and report the results of a potential energy distribution analysis [12] to describe the
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Fig. 1. Structure of HgSizO,, with internal coordinates and numbering of the atoms.

share of the individual symmetry coordinates in each normal vibration. The force

constants, however, of the six i.r. active and of the 13 Raman active vibrations are given
in terms of symmetry coordinates.

INTERNAL COORDINATES AND NORMAL VIBRATIONS

We start the analysis by assuming an octahedral structure for HgSizO,, with internal
coordinates and numbering of the atoms as shown in Fig. 1. Bond lengths and bond
angles collected in Table 1 have been taken from Ref. [3]. The numbering of the
equivalent sets of internal coordinates is shown in Fig. 2. It is particularly convenient to
use the linear combinations of the internal coordinates r, a, 8, and T collected in Table 2.
The advantage of these linear combinations is that they break the equivalent sets into
smaller equivalent sets, each of which is such that no more than one degenerate set
occurs in any of the species [7]. Consider that the molecule consists of three symmetri-
cally equivalent types of atoms. Each H atom is equivalent to the other H atoms, the
same is true for the O atoms as well as for the Si atoms.

The 78 vibrational degrees of freedom of the octahedral HgSizOy, correspond to the
following irreducible representations of the O, group:

Tuo=3As,+ Agy +4E, + 3Ty, + 6Ty, + 34y, + 3E, + 6T, + 4Ty,

From this follows that the molecule possesses 33 different fundamental modes. Out of
them the six T, <—A,, transitions are i.r. active, the 13 A, <A, E;«<Agand Ty, <Ay,
transitions are Raman active while the remaining 14 vibrations are inactive.

Table 1. Bond lengths and bond angles
[3], values in parentheses from [19]

Coordinate Value
R(Si-H) 1.475A (1.316A)
r(Si-0) 1.659 A (1.617A)

a(O-Si-H) 112.2° (109.5°%)
B(O-Si-O)  106.6° (109.4°)
®(Si-O-Si) 153.9° (148.5°)
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Fig. 2. Numbering of the internal coordinates of HySisO1,.

Table 2. Definition of internal coordinates

R r(%) a(x) B(x) o (%)

R, wx)=r+tn a(t)=a ta, B(x)=Bi1%£Ps o, HEh=rin
Ry  r(x)h=ritr a(t)=astay B(x)2=P>%Ps ®,  w(E)=ni
Ry r(E)s=rstre a(+)=asta, B(£)3=P>t By D;  (E)=1sETe
R, r(E)=rtr a(x)=astay B(x)s=Pst B, ®,  (E)=nin
Rs r(x)s=rotry a(t)s=agEay B(£)s=PyEBuw @ (E)s=nETy

Re r(£)=rmzry a(fl=auzan B(E)=Puzhr P wE)=muEtn
Ry H(E)=riatr, a(t)=antay B(£)r=PBrtpus D, (=13t T
Ry  r(E£)}=rstrg a(£)s=aistas  B(E)s=Pisthi  Ps (£ )k=75% 716
r(x)g=riyxry a(t)y=aptay B(£)=Buthr By TE)=TnETg
H(E)p=rwEry a(+)p=awEay ﬁ(i)w'—'ﬂm'—tﬁzl by H(E)p=TeETH
E)=ratrn a(t)=antan B(EI=Putfa Pu () =Tyt
() p=rutrs a(X)p=antay A(E)o=Pnthn Pn T(E)p=Tut Ty
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In order to find the symmetry coordinates we first have to calculate the irreducible
representations generated by the equivalent sets of internal coordinates in Table 2.
Standard procedures [7] lead to:

Tr=A+ T+ Ay + Ty,
[o=Ap+E+ T+ T+ Ty,
[,-=Ty+ T+ Ay+E,+Ty
Ty =Ay+Eg+ To+ Tou+ Ty
Fp-=T+ T+ Ay, +E,+T,
Dge=A+E,+ T+ Ty, + Ty,
Dg-=T\+ T+ Ay +E, + Ty,
Fo=A,+ Eg+ ng + T+ T,
=Ty +Tyu+A,+E,+T;
L-=Ap+E,+ Ty, + T, + Ty,
The sum I';, of these representations is of dimension 116. This means that 38 of them are
redundant. The difference between I';,, and Iy, corresponds to the redundant represent-
ations I'.4:
Di=35A1+As+SE,+ 5T, + 9Ty, + Ay, + 44y, +4E,+ 9T, + 6T,
Lyp=3A1,+ Ay +4E,+ 3T, + 6Ty, +3A,,+3E,+6T,,+4T;,
Liea=2A,+E,+2T,+ 3T, + Ay + Ay + E, + 3T, + 2T,
Some of the redundant coordinates can easily be eliminated, taking into account that the
sets of internal coordinates are not equivalent to each other. For example I}« is part of

I'..a and can therefore be eliminated. I, - has to be kept, however, because it is the only

set containing an A ,, species. Another possibility would be to eliminate both, I';+and I'g
resulting in

rred_rr(* —r¢=A1g+ T1g+ ng +A2u+2Tlu‘

After this partial success it is, however, not clear how the remaining problem should be
solved. We therefore have to proceed in a more systematic way.

CONSTRUCTION OF INTERNAL SYMMETRY COORDINATES

While treating the problems of molecular vibrations, the factorization of the secular
equation may be helpful. The so-called symmetry coordinates which factor the secular
- equation are generally built by the Wigner projection operator [7], a procedure which
has been applied to construct the symmetry coordinates of the i.r. active vibrations of
H;Si30y; as reported in [5]. In order to solve the whole problem, however, this method
cannot easily be applied to such a large molecule. The starting of a powerful technique
described by Gussont and Zers [8] consists in diagonalizing the Wilson g matrix.
For a molecule built of N atoms, the vector of 3N cartesian coordinates is defined as

Xz(xh yh FATIN ’xNayNa ZN) (1)

and the vector of internal coordinates is defined as

I=(i,, b, ..., I3n-6)- )
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The matrix B transforms the cartesian coordinates X into the internal coordinates I:
I=BX. ®3)
The g matrix can be calculated as
g=BM™'B’ 4)
where M ™' is a diagonal matrix whose components are the reciprocal atomic masses,

each of them repeated three times to account for motions in the three-dimensional space.
Let g be diagonalized

gD =DrI. ®))
D is unitary since g is hermitian. Gussont and ZgrsI [8] have shown that
>=D"I (6)

gives a completely reduced representation of the symmetry point group to which the
molecule belongs and that, therefore, = are coordinates reflecting the symmetry of the
molecule. It is perfectly possible to carry out the normal coordinate analysis by means of
these coordinates. For molecules of such high symmetry as HgSizOp,, the symmetry
coordinates S have the advantage that they are much simpler and therefore more useful
to define the potential energy function. It is therefore worthwhile to search for a matrix
A which transforms 2 into S:

S=AS. (7)

Transformation (7) can be carried out as follows. The Z coordinates, including the
redundant ones, are sorted according to the magnitude of the eigenvalues. In general,
the = will be mixtures of internal coordinates belonging to different sets of equivalent
coordinates. Linear operations always allow to split them so, that each of the resulting
coordinates will contain non-zero contributions only for a single set of equivalent internal
coordinates. After this procedure appropriate rotation and normalization lead directly to
the symmetry coordinates S.

In the case of H,SigO;, this procedure results in 116 symmetry coordinates, 38 of which
are redundant. We have several possibilities to choose the non-redundant coordinates
and it is known that the potential energy distribution for classifying vibrational modes is
related to the type of coordinates used in setting up the vibrational problem [13]. The
criteria we apply are to keep those coordinates which are (a) easiest to visualize and (b)
lead to the simplest expression for the potential energy function. Keeping this in mind
the elimination of the redundant coordinates has been carried out as described in
Ref. [7].

It is useful to know the redundant coordinates. We therefore report in Table 3 the set
of linearly independent, normalized symmetry coordinates and in Table 4 the corres-
ponding redundant coordinates.

INFRARED AND RAMAN ACTIVE VIBRATIONS

To analyse the i.r. active fundamental modes we have to consider the T, symmetry
coordinates Sy, Sss, S, Sa7, Sag and Sy. The simplest realistic approximation to describe
the potential energy function of the harmonic T}, modes is

29

2VT|,,= z anSrzm' (8)

n=24

The eigenvalue problem
| GTluFTIu —/‘{E| = 0 (9)
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Table 3. Set of independent and normalized symmetry coordinates for HSig0,,

1/VB(R,+Ry+ Ry+ Ry+ Rs+ Re+ Ry + Ry)
1/\/2—4_t(rl+r2+r3+r4+r5~1-r(,+r7+rg+rg+rw+r“-i-r,2
+ratrutrstretrgtrgtrgtratratratratr,)
1V24(a + o+ as+ag+tas+as+a+ag+agtag+ay+ap,
+aptaytastagtayntagtagtaytaytaytaytay)

UV24(1 =1 = T3+ Ty + Ts— T — Ty + Ty + Ty~ Typ— Ty + 1y
+ T3 =T~ Ts + Tis— Tir T Tig+ Tio— Ty~ Toy + Top + T3 — Tg)

UNA8(r + 1+ 1yt 1yt 1+ 16+ 1y rg— 21— 21— 21y, — 215
~2ri3—2ry—2ri5=2rigtristrigt rgtrgt rytrpt gty
1/4(r1+r2—r3—-r4+r5+r6—-r7-r8+r17+rlg—r19—r20+r21+r22~—r7_3—r24)
1/V4Tg(a1+a2+a3+a4+a5+a6+a7+a3—2a9—2a10—2a“-—2a12
—2a3—204=2015— 2015+ A+ Qg+ Qg+ Qg+ Qg+ Qg+ A+ ayy)
Vd(a,+a,=as—as+as+ag—a;—agtap+oig— = pt 0y + A — 0y — dy)
U VA8(By+ By + Ba+ Ba+ Bs+ B+ Br+ Bs — 2By — 2B10—2B11 — 2B1
—2B13—2B1a—=2P15s— 2P+ Brat Bis T+ Biot B+ B+ Bt Bz + fos)

1/4(=B1 =B+ B3+ Bs—Bs— Bs+ Br+Bs— Brr— Bis+ Brot Boo— By = B+ Bz + Bay)
V24D + By + Oy + By — 205 — 20, — 20, — 205 + Py + Oy + Dy, + Dyy)
UVE(®,— @, + Oy~ Oy + By — By + By — D)

V4(ri—r=rs+rs—rotrg+ry—rotra—ru—ristre—rotrgtr—ry)
VA(ry=ry—rytrg—rotrg—rytratrs—ry+trs—reg—rgtry+ry—ry)
1/4(r1—r2+r3—r4+r5—r6+r7—r3+r17-r13+rlg—r20+r21——r22+r23—r24)

VAo —ar—as+ag— s+ ap+a—aptap—au—ais+ae—a;r+agtay;—ay)
Vd(as—ay— a7+t ag— Qo+ Q=0+ 01+ a3 — 0y + 15— 1~ Qg+ oy + A3 — Q)
1/4(al—a2+a3~—a4+a5—a(,+a7—ag+a17—alg+alg—a20+a21~—a22+a23—a;_4)
VA(B3+ By— P71~ Bs+ Bo— Bro— P+ Bia—Bis+Bra+ Bis— Bie— Bro— B+ Bz + Bas)
1/4(=B1=Bo+Bs+Be+Bo—Bio+Bii—Bra—Piz+Bia—Bis+ Biet+ B+ Bis— B2 — B2)
V4(By—Ba+Bs—Ba+ Bs— B+ Br— Bs+ Brr— Bis+ Bro— Bao+ Bar — Bzt Bz — o)

1/V8(R,—R,+R;— R4+ Rs—R¢+R;—Ry)

1/V8(—R,~Ry+R;+R,+Rs+Rs— R;—Ry)

1/V8(R,— Ry~ Ry+R,~ Rs+R¢+R;—Ry)
1/\/@(’94"10"11—’12""13'*'"14"’15“’16)
1/\/§(—r1—r2+r5+r6+r17+rm—r2[—rzz)
1/\/§(—r3—r4+r7+r3+r19+r20—r23-—r24)
VA(ri=ry—=r3trytrs—re—r+rgtrg—rig— Fig+ Fag -+ rag = Fp = raa =+ rag)
UA(=rytry+r—rg—ro+rg—ry+ro+ry—ru+rs—retro—rp=ra+ry)
VA(ry—ry=rs+rgtrg—rg—ry+rp—rp+ry+trs—rg—ra+rg+r—rn)
1/\/§(a9+am"an”"a12+a|3+‘114“‘115_0515)

UVB(—a;—ay+as+ag+ gt ag—ay—apn)
l/\/§(~—a3—a4+a7+ag+aw+a20-aa—az4)
1/\/5(/39+ﬂ][)—6l1_ﬁ12+ﬂ13+ﬁl4_ﬁ15_ﬂ16)
1/\/5(“/3’3‘*‘.34+/37-ﬂ8+13|9”ﬁ20—.32 +Ba)

1/\@(51"ﬁz‘ﬁr"ﬂa‘ﬁn*‘ﬁm‘*‘ﬂzx = Bx)

VA(By— Bo— B3+ Ba+Bs— Bs— B+ s+ Brr— Bra— Bro+ Bao + Bt — Bz — s + Ps)
14(—=B1=Ba+ Bs+ Bs—Po+ Bro—Bu+Bra+Bia—Bia+ Pis—Bio+ Bin+ Bis— B — B=n)
U4(=B3—Bs+Br+ By + Bo—Bro— B+ Bra—Bis + Bra+ Bis— Bis+ Pro+ B — B — B)

1/V8(R,—R,+R;—R,— Rs+Ry— R, +Ry)

1/\/§Z(rl—r2—r3+ Pytrs—re—rytrgtre—rg—r+trs
Fra=ru=ristrg—rgt gt rg—ry—ryFrat rs—ry)
l/\/2_4(a1—a3—-a3+a4+as—aﬁ—a7+ax+aq—am—an+a‘2
tap-ay=astag—ant oyt oy ay—ay ot an—dy)

is solved by standard methods [14]. Numerical analysis leads to the force constants
collected in Table 5. Comparison of the observed and the calculated vibrational
frequencies reported in Table 6 shows that Eqn (8) is sufficient to describe the
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Table 3 (continued)
E,

SZla 1/ v48(r1—r2—r3+r4+r5—r6—r7+r3~—2r9+2r10+2rn—2r12
—2r13+2"14+2r15‘2”16""17+"13"‘"19"&0“’21+rzz+r23—724)

Sow 1/4(r1—r2+r3—r4+r5—r6+r7-—rg—r17+r18—r19+rzo—r2,+r22—r23+rz4)

S22a 1/ V 48((11—ag—a3+a4+a5—~a6—a7+a8—2ag+2a,0+2a“—2a]2
“2013+2al4+2(115—2‘116—a17+a18+al9‘azo_a21+azz+023‘024)

S 1/4(a1—az+as~a4+a5—a6+a7—ag~a17+a13—a,9+a20—a21+a22-a23+az4)

S 1/V48(By— Ba—PBs +Ba +Bs—Bs— Br+Bs— 25+ 2B+ 2B, — 2813
~2B13+2B1u+2B15—2B16— B+ Brs+ Bro— B~ B +Bn+ By~ Pu)
S L/4( =B+ B2 B3+ Bs—Bs+ Bs— B+ Bs +B17=Bist Bro=Pa+ B — Pro + Brs — Pas)

Srta 1/VB(R,+Ry+R3+R,~Rs~R¢— R;— Ry)
S 1/V8(Ri+R;— R3~R,+Rs+R¢—R;—Ryg)
Sase 1/V8(R,~R;~ R3+Ry+Rs— Rs— Ry + Ry)

S2sq VA(r+ntrtrgtrstrgtrtrg—rg=rig—rg—ry—ry—rp—ra—"ry)
Sasp VA(r+r—rs=re+rotrgtr+ro=ry—ry—ris—re+ry+rg—ry—ry)
Shse VA(=rs=rytrtrgtrotrg—ry—rp=ru=ra+rs+rng—rg—ro+rs+ry)
S6a 1/\/§("9_’10+’11“"12'*"13"14‘*‘”15"’16)

Sa6s UV8(rs—ry—r+ Tyt rig—ryg—rantry)

Sase UV8(r—r—rs+ T+ riz—rg—ra+ry)

Sara 1/\/§(a9—alo+an—a12+a13—a14+a15—a15)

Sazp 1/‘\/§(a3—a4—a7+ag+a19—azg-a23+a24)

Sarc 1V8(a—~ay—as+ o+ ap— g — oy +0z)

S284 1/4(By+ Ba+ B+ Bat Bs+ e+ Br+ Bs — B~ Bis— Bro— oo — Bor — Prr — Ps — Bas)
S 1/4(B3—Bs— B+ Bs+ Bo+ Bro+ Pr+ Pra—Bis—Bra—Bis— Brs+ Bro—Ba— B+ Pas)
Sage 1/4(B1— B2 = Bs+ Bs+Bo+ Bro—Bi1— B~ Bz —Bra+ Pis+ Prs+ Bir— Pis — Pu + )
S04 1/V8(By—Bro+Bii—Pua + B3 — Bt Bis— Pie)

Saop l/vg(ﬁl+ﬂ2_.35'—ﬂ6+.317+ﬁ18"/321—ﬁZZ)

Sa0c 1/VB(—Bs—Bs+ B+ Bs—Bro— Pro+ Bas + Bs)

T2u
S30a VA(r+r—r—rytrs+rg—r—ry—rg—rg+trgtrg—ry—rntra+r)
S0 Va(rtrn—rs—re—ro—ro—ry—rptrap+rytrstrgtrmtrg—r—rn)
S30¢ Va(rs+r—r—rgtrgtrg—ry—rp—raz—ru+rs+rgtrgtrng—ra—rs)
S31a 1/4(a+ar—as—as+as+as— 07— ag— Gy — Qg+ Qg+ Gy — Gy — Oy + Aoz + Ay
Sas 14(a+ar—as—as—ay— g~ ay— 0+ a3+t s+ g+ o+ og—ay—axn)
Siie Vd(as+os—a;—ag+ag+ap—ay— 0~ diy— s+ Qs+ Qg+ Qg+ Q= dz— Qo)

S324 1/4(B1+Ba—Ps— Bs+Bs+Be—Pr1— Ps—Prr— Bis+ Bro+ Bao— Br — B+ B+ Bos)
Sap 1/4(= B3+ Ba+B7—Bs+ Bot+ Prot Bu+PBr—Bis—Pra—Bis—Bre— Brot+ B+ Bz — Bas)
Saac 1/4(B1—Br— Bs+ Bs— Bo—Pro+ Bui+ Bra+ Bia+ Bra—Bis— Pro+ Brr—Bis— Bu + B)
S33a V(@)= @y + @3~ Oy — Dy + Oy~ O + D)

S 1/VE(®)~ O3 — Bs— B+ O, + Dy + Dy— Dyy)

S 1/V8(®,— @+ D5 — Py — P, + O+ Dy — Dyy)

experimental observations. The presented solution is the only one which .by means of
Eqn (8) allows quantitative description of the experimental data. Mixing of the
symmetry coordinates in the normal vibrations can be analysed by calculating the
potential energy distribution (PED) according to [12, 14]:

FiL}

e (10)
> FiL}

Pij=

" The L matrix is defined by § =LQ whereby Q are the normal coordinates. The results
of this analysis in Table 6 show the % contribution of the symmetry coor_dmgtes to a
certain normal mode. From the potential energy distributior} (PED) analyms, it fo.llows
that v, to ¥, can be regarded as being one of the internal vibrations v(Si-H), v(Si-O),

SA(A) 46-7-8
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0(Si-H) or 6(O-Si-0). This makes it easy to compare them with vibrations observed in
similar silicon compounds.

Out of the 13 Raman active fundamental vibrations, three are of A, symmetry, four
are of E, symmetry and the remaining six belong to the T, species of the O, point group.
Again the simplest realistic approximation for the potential energy function of the

Table 4. Set of independent and normalized redundant symmetry coordinates for HgSi,O,,

Ay
Sk 1/V24(B, + B2+ Byt Ba+ Bs+ Bo+ B+ By + o+ Bio+ B + Br

B3+ Brat Bist Pro+ Brr+ Bis+ Bro+ Bag + Bay + B + Bz + Bou)
Swe UVIA® + Dy + Dy + Dy + s + B+ By + By + Dy + Dy + Dy + Dy

Sk VA(T) ~ T+ 3= Ty + T~ T+ Ty~ Ty = Ty7+ Tig — Tyg + T — Toy + Ty — Tz + Tag)
SRBb 1/v 48(—T]+72+T3_T4—T5+T(,"|"T7—‘C'g+2'l'9—2110"2111+21'12
+273 =271 — 2145+ 2136 + Ty — Tig — Ty + Ty o+ Ty — Top— T+ Tg)

Sraa Vd(ry+ 1y~ 15— T+ To+ T+ Ty + Ty — T3 — Ty — Tis— Ty + Tr + T — Toy — Ta)
Srav VA(T3+ T4~ 17— Ts— To— Tyo+ Ty + Ty + Ti3 + Ty — Tys— Ty + Tro + Too — Toz — Tog)
Shac VA=t =Ty = T3 =Ty = T5— T~ T3 — Tg+ Ty + Tig+ Tio + Tog + Toy + Ty + T3 + Ty )

SRSa 1/\/§(T3~T4_T7+'Eg+7,'19‘—1'20—"6'23+T24)
Sgrsb 1/\/§(—rl+rz+7:5—-1'6—r,7+1:13+1'21~rzz)
Srsc 1/\/§("7—'9+T10—T11 F T Tt T s+ Ty6)

T,

A

Srea V(a1 —ay~as+aytas—as—ay+ag+ay— g — Qg+ ay+ Qy — Ay — Aoy + 0y
Sreb VA(—astay+as—ag— o+ ag=—ay+an+a—ay+as—a;s+ ay—ag—ayn+ o)
Srec Va(ai—ay—astagtag—ap—an+ap=—an+au+as—a,—ay+ag+ay—an)

SR7a 1/2(@5""@5+ (D7“q)8)
Spr 1/2(—®1+®3+(I)9"q)11)
Srre 12( = @y + @y + g~ D)

Skraa VAt + == Ty 15+ 76— T — Tg— Ty — Tyg + Tig + Top = Ta — Toa + Ty3+Ty4)

Srap VA(T3+ 14— 1~ Tg+ To+ Ty~ Ty~ Tiy = Tia — Tig + T+ Tt Trg + To0 — To3 — Tag)

Srsc VA( =T =T+ Ts+ T+ To+ Tig+ Ty + Tiy— Ti3 — Tyg — Tis— Ti6 — Tp7 — Tig + Ty + Tap)
Alu

SR9 1/v 24(TI+TZ+T3+T4+T5+76+ T7+Tg+fg+fm+fn+f12

+T13+Tl4+7:15+1'16+T17+T13+T19+T_7_0+721+T22+T23+T24)

Srio 1/@(ﬂl‘ﬂ2‘53+ﬂ4+ﬁ5*56”ﬁ7 +Bs+Bs—Bio—Buthn
+B1= = Bis+ Brs—Bu+ Pis+ Bro— B — By + B+ By — o)

Skita Ud(ty+ 1= 13— Ty + 05+ 1 — Ty — Ty + Ty + Tyg — Tyo — Tog + Toy + Ty — T3 — Ta4)
SR]lb /v 48("51_1'2_7:3-1'4_1'5_Tﬁ_T7_T3+2Tg+2T10+2T“+2T12
223+ 201+ 2715+ 2006 — Tyy — Tig— Ty — Tog — Toy — Tyy— To3 — Ta)

Srize V4(oy+os+ ozt ay+as+as+a,+ag—ap—ag—a— Qo= Qg — Ugp— O3~ Qlyy)
SRIZh 1/4(a1+a2—a5—a(,+ag+ am+ a11+a12—— Q3= Oy — ali—a16+ a17+a13—~ ay — a22)
SRrize Va(~ay—as+ar+ag+ag+ay—a;—ap,— Q3 Qg+ s+ Qg — A9 — Qg+ gy + Ayy)
Sriza 1/\/§(¢1+¢2+‘D3+¢4"q’g—‘pm“q’u_@lz)
Spim V(@)= By + By + Bg— By — Dy + By — Dy,
Sruse 1/\/§(—<1>2+q>4+<1>5—c1>6—<1>7+cp8—q>w+¢,2)

CSrie VAT =Tt~ Tt T T+ T~ Ty T — Ty T “ Tt Ty~ Tt Tn—Ty)
Srub VA(—t1+ i+ 15— 15+ 19— 19— 1y F T Tyt T+ Tis— T+ Typ — Tig — Tyy + Tp)
Srue  UMt3—1— 17+ ty— 1y + 19— 7y + Tt T =Ty +Tis— Tie— Tio+ Tog + To3~ Tpy)

Srisa 1V8(zg+ 139~ T Tt T+ Tuy—Tis—7))

Srisp 1/\/§(Ts+f4— T9 =Ty~ Tig— Tag+ To3 + Tyq)

Srise 1/\/§(‘Tx“72+1'5+76+Tx7+‘518“‘521“Tzz)

Skiea 1/4(71“Tz‘f3+1’4+fs“‘fe"1'7+Ts"‘fn—fls—fw‘*‘?zo‘*'fzr ~ Ty~ Tyt Ty)
1/4("7?1+Tz+1'5“56—'59+710+711—712+713‘714“715'*“'516'*"517"‘518"721+Tzz)
1/4("1'3‘*'74'*"57—78"1'9+T10"T11+712+T13‘T14+715‘716+Tx9"720'“723+724)
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Table 5. Force constants for the i.r.
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vibrations;

values in parentheses have been calculated by means

of structural data from [19]

Value

Force constant  (mdyn A~')  (mdyn A rad~?)

Tlu.
Fo 2
Fs o5
Fi. %
Fpon
Fy
Fa 29

2.958 (2.959)
5.439 (5.042)
4.729 (4.718)

0.871(0.707)
1.526 (1.966)
1.372 (1.098)

Raman active modes is

3 8 17
2V by 1y =2V F 2V A2V = > FuSh+ > FuSh+ > FuSi. (1)

n=1 n=5

n=12

Numerical analysis shows that this potential energy expression is sufficient with the
exception of 2V, where Fsq= Fgs#0 has to be used.

A good simplified force field to describe the i.r. and the Raman active vibrations in
terms of internal force constants can be expressed as follows:

Ay

F1,1=fR+3fRR
Eo=f+f.+2f,
F3.3=fa+2faa

E

g

T,

F Sz.fr+frr—fr’-r F12,12=fR_fRR
F 6=fa_faa F13,13=fr+frr
F7.7=fﬁ"‘f/3ﬂ F14,14=fr_frr+f;r

88=fd>_2fd>€b F15.15=fa

Fi 16 =fﬂ
F17. 17 =f,3 +fﬂﬂ

T, ,
Foyu=fr+frr

Fys os=fi+ft+fh
Fys,06=f,—for

Fym=fa

Fzs.zs =fﬂ +f/3ﬁ

F29,29=f,3- (12)

Having accepted this force field it is easy to express the force constants of the Raman
active vibrations A,,, E, and T, in terms of those of the i.r. active modes:

Ay,
F,

E

8

Ty,

1=F24,24+2fRR F5.5=F25.25—2f;r F12.12=F24,24"2fRR

—_ ! — — £t
Fz,Z“Fzs.25+fr,- F6.6"F27,27"‘faa F13,13"F25.25 frr

F;

3=F27,27+2faa F; 7=Fy _fﬂﬁ Fiy14= Fis.5 +fr

8= fo— 2fo0 Fis.15=Fy x
F16, 16=F29,29

Fiy = Fzs.zs- (13)

Table 6. Infrared active vibrations

Normal Observed Calculated

mode (em™) (cm™") PED Type

Tlu
Vou 2274.0 2274.0 100 S5, v(Si-H)
Va5 1140.0 1140.0 93 Sy v(8i-0)
Va6 878.0 878.0 92 S27 é(sl"H)
Vor 560.0 560.0 58 S +27 S»s 0(0-8i-0)
Vag 468.0 468.0 63 525 +21 Szg +14 Szg V(Si—o)
Vag 399.0 399.0 77 S+ 17 8y 8(0-Si-0)
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Table 7. Force constants for the Raman vibrations

Value
Force constant  (mdyn A~!)  (mdyn A rad™?)  (mdyn rad™!)

F., 3.032
Fy, 5.424
Fs 1.316

E,

Fs s 5.161

Fs ¢=Fq.s 0.200
Fg s 0.647

F, 1.353

Fy s 0.295

ng
Fis 2.988
Fi 13 5.316
Fu 4.700
Fis. s 0.876
Fig.16 1.369
Fi7 19 1.527

Regarding the vibrations v, vg, ¥4 and vy, there is no good experimental data available.
We have therefore made use of Eqn (13) together with the Raman data to calculate the
results collected in Tables 7 and 8.

DiscussioN

The normal coordinate analysis of the HgSizO,, molecule, which at first glance appears
to be a difficult problem, leads to a clear description of the fundamental modes of this
molecule. We conclude that the presented results can be regarded as a beginning to
quantitatively describe larger silsesquioxanes and their corresponding inclusion com-
pounds. A simple comparison of the vibrations observed in similar silicon compounds is
made possible by the result of the potential energy distribution analysis that the

Table 8. Raman active vibrations

Normal  Observed*  Calculated

mode (em™) (cm=1) PED Type

vy 2301.8 2301.8 100 §, v(Si~H)

s 393.0 48,4265,  6(Si-H)
EK

vs 932.4 932.4 87S,+128;  O(Si=H)

v 697.3 697.3 61S,+318,  ¥(Si-0)

vy 500.0 500.0 68 5;+25S;s 0(0-Si-0)

Vg 148.0 92 84 O(Si~O-S5i)
Ty

Vis 2285.4 2854 1008, W(Si-H)

- 1117.0 1117.0 838, +108;s  v(Si-0)

v14 891.1 891.1 83 S15+ 13 S|4 6(Si_H)

Yis 610.0 610.0 76S,+178;  (Si-0)

Vie 3410 80 S17 +12 S13 6(0_Sl"0)

Vi 1940 908, © 8(0-Si~0)

* Unpublished FTIR Raman experiments.
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Table 9. Comparison of Si-H vibrational frequencies

SiH[17] . SigH;5[18] H;Sig0;,
v(Si-H)
A2186.9 (R) A 2128(ax) (R)  A;,2301.8(R)
A, 2128(eq) (R)
T,2189.2 (i.r.) T,,2285.4(R)
E,2128(ax) (R)

E,2128(eq) (R) T,,2274.0 (i.r.)
A,,2120(ax) (i.r.)
A, 2120(eq) (i.r.)
E, 2120(ax) (i.r.)
E,2120(eq) (i.r.)
O(Si~H)
E971.0(R) Ay, 515(eq) (R) A 393.0(R)
Ay, 377(ax) (R)
T,913.5 (i.r.) E,932.4(R)
E,893(eq) (R)
E, 736(ax) (R) T, 891.1 (R)
E,655(eq) (R)
E, 476(ax) (R) T,,878.0 (i.r.)
A, 384(eq) (i.r.)
A, 330(ax) (i.r.)
E,865(eq) (i.r.)
E,720(ax) (i.r.)
E, 625(ax) (i.r.)
E,519(eq) (i.r.)

fundamental modes can be described in terms of the internal vibrations v(Si-H),
W(Si-0), 6(Si-H), 8(O-Si—0) and (Si~0-Si). Smith [15] reported Si-H and Si-O i.r.
frequencies in the region of v(Si~-H)=2250-2100cm™", 6(Si-H)=950-800cm™" and
¥(Si—0) = 1125-1010 cm ™" of silicon hydride and silicon oxide compounds. These data fit
well with vy, (Si-H) =2274 cm™!, r,(Si-H)=878cm™" and vy, (Si-0)=1140cm™" of
H,SigOy,. A very intense v(Si-O) absorption at about 1100 cm™" is observed in zeolites
[9, 10]. Quantitative comparison with the Hg(SiO), molecule which possesses S, sym-
metry and for which v(Si—H) =2200 cm™* and %(Si-0) = 1114 cm™" have been reported
[16] would be very interesting. The i.r. and the Raman active v(Si~H) and 6(Si-H)
vibrations in SiH,, SigH,, and HgSizO,, reported in Table 9 lead to the conclusion that the
force constants of the comparable modes in these molecules are very similar, an
observation which is supported when comparing the force constants of these molecules
[17, 18]. Thus many of the force constants of a large variety of silicon hydride and silicon
oxide compounds seem to vary only little. This will help to simplify quantum chemical
force field calculations of such structures.

Acknowledgements—This work was supported by grant No. 2-5.542 of the Schweizerischer Nationalfonds zur
Forderung der wissenschaftlichen Forschung. We would like to thank H. BURGY for synthesizing the HySizOp,
M. BARTSCH for measuring the FTIR Raman spectrum and I. KaMBER for helpful discussions.

REFERENCES

[1] C. L. Frye and W. T. Collins, J. Am. Chem. Soc. 92, 5586 (1970).

[2] H. Biirgy and G. Calzaferri, J. Chromatog. symposium volumes, in press.

[3] K. Larsson, Ark. Kemi, 16, 215 (1960).

[4] V. W. Day, W. G. Klemperer, V. V. Mainz and D. M. Millar, J. Am. Chem. Soc. 107, 8262 (1985).
[5] R. Beer, H. Biirgy, G. Calzaferri and I. Kamber, J. Electron Spectrosc. Rel. Phenom. 44,121 (1987).
[6] Y. Hase and M. Hase, Anal. Acad. Bras. Cienc. 54, 325 (1982). '

[7] E. B. Wilson, J. C. Decius and P. C. Cross, Molecular Vibrations. McGraw-Hill, New York (1955).
[8] M. Gussoni and G. Zerbi, J. Molec. Spectrosc. 26, 485 (1968).

[9] J. Baumann, R. Beer, G. Calzaferri and B. Waldeck, J. Phys. Chem. 93, 2292 (1989).



1056 PeETER BORNHAUSER and GioN CALZAFERRI

[10] K. Tai No, D. Han Bae and M. Shik Jhon, J. Phys. Chem. 90, 1772 (1986).

[11] J. A. Boatz and M. S. Gordon, J. Phys. Chem. 93, 1819 (1989).

[12] Y. Morino and K. Kuchitsu, J. Chem. Phys. (1952). 20, 1809.

[13] J. C. Whitmer, J. Molec. Spectrosc. 68, 326 (1977).

[14] D. F. McIntosh and M. R. Peterson, General Vibrational Analysis Programs Utilizing the Wilson GF
Mazrix Method For a General Unsymmetrized Molecule, QCPE No. 342 (1977).

[15] A. L. Smith, Spectrochim. Acta 16, 87 (1960).

[16] C. Fischer and H. Kriegsmann, Z. Anorg. Allg. Chem. 367, 219 (1969).

[17] Gmelin Handbook of Inorganic Chemistry, 8th edn, Silicon Supplement Volume B1. Springer-Verlag,
Heidelberg, F.R.G. (1982).

[18] K. Hassler, E. Hengge and D. Kovar, Spectrochim. Acta 34A, 1193 (1978).

[19] H.-B. Biirgi and T. P. E. Auf der Heyde, unpublished results.



