PHOTOFUNCTIONAL ZEOLITES: SYNTHESIS, CHARACTERIZATION, PHOTOCATALYTIC REACTIONS, LIGHT HARVESTING ### MASAKAZU ANPO EDITOR Nova Science Publishers, Inc. Huntington, New York Editorial Production: Office Manager: Susan Boriotti Annette Hellinger Graphics: Frank Grucci and Jennifer Lucas Information Editor: Tatiana Shohov **Book Production:** Donna Dennis, Patrick Davin, Cathy DeGregory, and Lynette Van Helden Circulation: Latoya Clay and Anna Cruz Library of Congress Cataloging-in-Publication Data Photofunctional zeolites: synthesis, characterization, photocatalytic reactions, light harvesting / Masakazu Anpo (editor). p. cm. Includes bibliographical references and index. ISBN 1-56072-801-9 1. Zeolites. 2. Photocatalysis. I. Anpo, Masakazu. TP245.S5P48 2000 CIP 00-027502 Copyright 2000 by Nova Science Publishers, Inc. 227 Main Street, Suite 100 Huntington, New York 11743 Tele. 631-424-6682 Fax 631-424-4666 e-mail: Novascience@earthlink.net e-mail: Novascil@aol.com Web Site: http://www.nexusworld.com/nova All rights reserved. No part of this book may be reproduced, stored in a retrieval system or transmitted in any form or by any means: electronic, electrostatic, magnetic, tape, mechanical photocopying, recording or otherwise without permission from the publishers. The authors and publisher have taken care in preparation of this book, but make no expressed or implied warranty of any kind and assume no responsibility for any errors or omissions. No liability is assumed for incidental or consequential damages in connection with or arising out of information contained in this book. This publication is designed to provide accurate and authoritative information with regard to the subject matter covered herein. It is sold with the clear understanding that the publisher is not engaged in rendering legal or any other professional services. If legal or any other expert assistance is required, the services of a competent person should be sought. FROM A DECLARATION OF PARTICIPANTS JOINTLY ADOPTED BY A COMMITTEE OF THE AMERICAN BAR ASSOCIATION AND A COMMITTEE OF PUBLISHERS. Printed in the United States of America ## DYE MOLECULES IN ZEOLITE L NANO CRYSTALS FOR EFFICIENT LIGHT HARVESTING Gion Calzaferri Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3000 Bern 9, Switzerland #### 1. Introduction Plants are masters in the direct transformation of sunlight into energy. In the ingenious antenna system of the leaf, sunlight is transported by green chlorophyll molecules for the purpose of energy transformation. We have now succeeded in reproducing a similar light transport in an artificial system on a nano scale. In this artificial system, zeolite cylinders adopt the antenna function. The light transport is made possible by specifically organized dye molecules which mimic the natural function of chlorophyll. Zeolites, some of which occur in nature as a component of the soil, are materials with different cavity structures. We are using miniature zeolite L crystals of cylindrical morphology which show a continuous tube system and we have succeeded in filling each individual tube with a chain of joined dye molecules. Light shining on the cylinder is first absorbed and then transported by the dye molecules inside the tubes to the cylinder end. Tests have shown that this radiationless transport takes place much faster than has been known for green plants so far, 4,5 for which, however, other ultra fast processes have been reported.⁶ Attempts are being made to use the efficient zeolite-based light harvesting system for the development of a new type of thin layer solar cell in which the absorption of light and the creation of an electron-hole pair are spatially separated as in the natural antenna system of green plants.⁷ We expect that our system can also contribute to a better understanding of the important light harvesting process which plants use for the photochemical transformation and storage of solar energy. We have synthesized nanocrystalline zeolite L cylinders ranging in length from 200 nm to about 3000 nm.8 A cylinder of 600 nm e.g. consists of about 100'000 parallel arranged tubes.9-11 Single red emitting dye molecules (oxonine) were put at each end of the tubes filled with green emitting dye (pyronine). This form of arrangement made an experimental proof of efficient light transport possible. Light of appropriate wavelength shining on the cylinder is only absorbed by the pyronine and moves along these molecules until it reaches the oxonine. The oxonine absorbs the energy by a radiationless energy transfer process, but it is not able to send it back to the pyronine. Instead it emits the energy in the form of red light, visible to the naked eye. 9,10,12 The artificial light harvesting system makes it possible to realize a device in which the dye molecules inside the tubes are arranged in such a way that the whole light spectrum can be used by conducting light from blue to green to red without significant loss as illustrated in Scheme 1 (see page 213). Such material could conceivably be used in a dye laser of extremely small size. 7,13 The light harvesting nano crystals are also been investigated as probes in near field microscopy and as luminescent probes in biological systems. Synthesis, characterization and applications of an artificial antenna for light harvesting within a certain volume and transport of the electronic excitation energy to a specific place of molecular dimension has been the target of research of many laboratories in which different approaches have been followed. However, to our knowledge the system reported in ref 10 is the first artificial antenna which works well enough to deserve this name. Many other highly organized dye-zeolite materials of this type can be prepared by similar methods and are expected to show a wide variety of remarkable properties. The largely improved chemical and photochemical stability of dye molecules intercalated in an appropriate zeolite framework allows us to work with dyes which otherwise would be considered uninteresting because of lack of stability. We have developed two methods for preparing well defined dye-zeolite materials, one of them working at the solid/liquid and the other at the solid/gas interface. Different approaches for preparing similar materials are, e.g. in situ synthesis¹⁶ or different types of crystallization inclusion synthesis.¹⁷ #### 2. BASIC PRINCIPLES Zeolite nano crystals can act as hosts for supramolecular organization of molecules, complexes and clusters, thus encouraging the design of precise functionalities. The main role of the zeolite framework is to provide the desired geometry for arranging and stabilizing the incorporated species. 7,18-20 Focusing on supramolecularly organized dye molecules in the channels of hexagonal zeolite L crystals we have shown that they provide fascinating possibilities for building an artificial antenna device which consists of highly concentrated monomeric dye molecules in a specific arrangement.²¹ Organic dyes have the tendency to form aggregates already at low concentration. Such aggregates are known to cause fast thermal relaxation of electronic excitation energy. The role of the zeolite is to prevent this aggregation and to superimpose a specific organization. Dye molecules of appropriate size are arranged with their long molecular axis along the linear channels and they cannot glide past each other because the linear channels are too narrow. This allows the filling of specific parts of the nano crystals with a desired type of dye. In such an antenna, light is absorbed by one of the strongly luminescent chromophores. Due to short distances and the alignment of the electronic transition dipole moments of the dyes along the channels, the excitation energy is transported by Föster type energy migration preferentially along the axis of the cylindrical antenna to a specific trap. Classical aspects of energy transfer in molecular systems were described by H. Kuhn.²² We have recently demonstrated that the intercalation of pyronine and oxonine molecules into the linear channels of zeolite L can be visualized with the help of a fluorescence microscope.9 One can observe the alignment of the dyes in the channels by means of a polarizer, because maximum luminescence appears parallel to the longitudinal axis of the crystals, and extinction appears perpendicular to it. Theoretical considerations of energy migration as a series of Föster energy transfer steps have shown that in material of this kind energy migration rate constants of up to 30 steps/ps or even more can be expected.¹² The principle of the system investigated is illustrated in Scheme 2, where the empty bars represent donor molecules, e.g. pyronine, located in the channels of zeolite L and the dashed bars are acceptor molecules, e.g. oxonine, which act as luminescent traps at both ends of the cylinder. We define the occupation probability p as the ratio between the number of sites occupied by a dye and the total number of sites available. Hence, p adopts values between 0 for an unloaded zeolite and 1 for a zeolite loaded to its maximum. The enlargement shows a zeolite L channel with a pyronine molecule (X = C-H), the $S_0 \leftrightarrow S_1$ electronic transition moment of which is aligned along the channel axis. The dashed bars at the front and end symbolize an oxonine molecule located at the front and the back of each channel. A nanocrystal of 600 nm length and a diameter of 800 nm gives rise to more than 100'000 parallel-lying channels, each of which bares a maximum of 400 sites for molecules the size of oxonine and pyronine. In the experiments reported in ref 10, light is absorbed by a pyronine molecule located somewhere in one of the channels. The excitation energy then migrates along the axis of the nanocrystal, as indicated by the arrows in Scheme 2, and is eventually trapped by an oxonine located at the front or at the back of the cylinder. The electronically excited oxonine then emits the excitation energy with a quantum yield of approximately one. This process which we call frontback trapping has been investigated theoretically for energy migration occurring by Föster energy transfer. We found that a total front trapping efficiency of up 99.8 % can be obtained for nano crystals of 50 nm length, if all sites are occupied by a pyronine chromophore. The experiments reported in ref 10 are based on the fact that pyronine loaded zeolite L nanocrystals, modified with one oxonine molecule at the front and at the back of each channel on average as illustrated in Scheme 2 can be prepared and that it is possible to synthesize zeolite L nano crystal-cylinders of different average length with narrow size distribution. Scheme 2: Representation of a cylindrical nanocrystal consisting of supramolecularly organized pyronine molecules (X = CH), indicated by empty rectangles, and an oxonine (X = N) trap at the front and the back of each channel, indicated by the shaded rectangles. The enlargement shows a detail of the zeolite L channel with a dye molecule and its electronic transition moment, which is aligned along the channel axis. **Figure 1.** Speculation on a new type of dye-sensitized solar cell. The cylinders represent dye-loaded zeolite L nano crystals of about 600 nm length. # 3. AN ELEGANT EXPERIMENT FOR VISUAL PROOF OF ENERGY TRANSFER A simple experiment for the visual proof of the energy transfer between dyes in zeolite L is based on the observation that pyronine and oxonine dyes are incorporated from an aqueous solution with about equal rates. It is therefore possible to realize the situation illustrated in Figure 3 in which the donors are pyronine and the acceptors oxonine molecules. The mean distance between donors D and acceptors A can easily be varied by varying the occupation probability. To carry out the experiment we have two possibilities: The first is to work with a constant total amount of oxonine and pyronine and to vary the amount of zeolite L. The second is to work with a constant amount of zeolite L but to vary the amount of oxonine and pyronine. Both lead to dye loaded zeolite L nano crystals with varying occupation probability and therefore varying donor to acceptor distances. In aqueous dispersions the first type of experiments give nicer results for visual demonstration while the second possibility is more satisfactory for quantitative investigations because light scattering is constant for each sample. We now consider the visual demonstration. The five suspensions illustrate in Figure 2 (see page 213) have been prepared by starting with aqueous solutions containing exactly the same amount oxonine and pyronine (10⁻⁶ M). To 2.5 mL of these solutions a decreasing amount of zeolite L (average length of the nano crystals 300 nm) was added: 1, 10 mg; 2, 4 mg; 3, 2 mg; 4, 1 mg; 5, 0.5 mg. Under these conditions incorporation of the dyes is quantitative when boiling the samples under reflux for 2 h.9 The concentration of each dye inside of the nano crystals was 1, $6.25 \cdot 10^{-4}$ M; 2, $1.25 \cdot 10^{-3}$ M; 3, $2.5 \cdot 10^{-3}$ M; 4, $5 \cdot 10^{-3}$ M; 5, $1.0 \cdot 10^{-2}$ M. A rough estimate of the mean donor to acceptor distance RDA can be obtained by assuming isotropic conditions: $$R_{DA} = \left[\frac{3}{4\pi} \bullet \frac{1}{c_A N_A} \right]^{\frac{1}{3}} \tag{1}$$ N_A is the Avogadro number and c_A is the concentration of the oxonine in the zeolite nanocrystal. From this we obtain the following mean donor-acceptor distances: 1, 93 Å; 2, 68 Å; 3, 54 Å; 4, 43 Å; 5, 34 Å. A more sophisticated theoretical treatment, which takes the anisotropy of the material into account can be found in ref. 12. The Föster radius for pyronine to oxonine energy transfer along the channels (κ^2 =4) in a medium of refractive index of 1.4 is equal to 72 Å, based on the pyronine-oxonin spectral overlap which is 1.5×10⁻¹³ cm³M⁻¹. The main processes responsible for the observation reported in Figure 2 are explained in Figure 3 (see page 214). Energy migration between the donor molecules and between the acceptor molecules, which are of similar probability as the energy transfer, and also radiationless relaxation processes are not indicated. Taking into account radiationless processes, namely internal conversion k_{IC} , intersystem crossing k_{ISC} , and bimolecular quenching $k_{Q}[Q]$ with a quencher Q, the time dependent concentrations of the donor D and the acceptor A in the excited singlet state S_1 , $[D_{S1}]$ and $[A_{S1}]$, can be expressed as follows, where j_{abs} is the number of photons absorbed per unit time: $$\frac{d[D_{S1}]}{dt} = j_{abs} - (k_{Et} + k_F^D + k_{IC}^D + k_{ISC}^D + k_Q^D[Q])[D_{S1}] = j_{abs} - [D_{S1}] \sum_{d} k_d^D$$ (2) $$\frac{d[A_{S1}]}{dt} = k_{Et}[D_{S1}] - (k_F^A + k_{IC}^A + k_{IC}^A + k_Q^A[Q])[A_{S1}] = k_{Et}[D_{S1}] - [A_{S1}] \sum k_a^A$$ (3) From this follows the fluorescence quantum yield of the donor Φ_F^D and of the acceptor Φ_F^A , under stationary conditions: $$\Phi_F^D = \frac{k_F^D}{\sum k_d^D} \tag{4}$$ $$\Phi_F^A = \frac{k_{Et}}{\sum k_d^D} \bullet \frac{k_F^A}{\sum k_a^A} \tag{5}$$ A quantity which in many cases can easily be measured, even in a heterogeneous system, is the ratio between these two fluorescence quantum yields. We therefore write: $$\frac{\Phi_F^A}{\Phi_F^D} = k_{Et} \bullet \frac{k_F^A}{k_F^D \sum k_a^A} \tag{6}$$ Scheme 1: Representation of a bi-directional antenna; $\lambda_1 < \lambda_2 < \lambda_3$. A cylindrical zeolite L nanocrystal containing in the middle part blue emitting dye molecules followed on both sides by green and then by red emitting ones. All dyes are present as monomers and the spectral overlap $J_{i,i}$ and $J_{i,i+1}$ (i=1,2,3) between the absorption and the emission spectra are large. Figure 2. Photographic picture of the fluorescence of suspensions 1-5 after specific excitation of the pyonine at 254 nm illustrating the increasing pyronine to oxonine energy transfer rate from left to right. The dye concentration inside the nanoncrystals is doubled in each sample from left to right. This means that it increases in total by a factor of 16 from 1 to 5. The experiment was carried out with zeolite L of 300 nm average length. **Figure 3.** Main processes taking place in a zeolite L nanocrystal containing a mixture of donor (pyronine) and acceptor (oxonine) molecules, after excitation of a donor. $k_{\rm ET}$ is the rate constant for energy transfer, while k_F^A and k_F^D are the rate constants for fluorescence of the acceptor and the donor, respectively. The donor molecules are marked as green rectangles and the acceptors as red rectangles. **Figure 6.** Zeolite L microcrystal for measuring the intrazeolite diffusion of dye molecules by means of Föster energy transfer. Above: the situation at the beginning of the experiment. Below: compare with Figure 3. The donor molecules are marked as green rectangles and the acceptors as red rectangles. **Figure 8.** Main processes occurring in the energy migration from an excited donor (pyronine) taking place mainly along the cylinder axis because of geometrical constraints. The excitation energy is finally trapped by an acceptor (oxonine) located at the end of the zeolite L nanocrystal which emits red light. k_{ET} is the rate constant for energy transfer, while k_F^A and k_F^D are the rate constants for fluorescence of the acceptor and the donor, respectively. The donor molecules are marked as green rectangles and the acceptors as red rectangles. Polarization of the absorbed and of the emitted light is indicated. Figure 10. External trapping of energy absorbed somewhere by a donor inside of a dye loaded zeolite nanocrystal. Energy migration takes place mainly along the cylinder axis because of geometrical constraints. The excitation is trapped by an acceptor located at the end of the zeolite L nanocrystal. The excited acceptor either transfers its energy to an external acceptor or relaxes by emitting a photon, depending on the conditions. This equation shows that the ratio between the acceptor and donor fluorescence quantum yields is directly proportional to the energy transfer rate constant k_{Et} . Applying Fösters equation²⁴, the rate constant k_{Et}^{ij} for energy transfer from an excited dye molecule on site i to an unexcited one on site j depends on the fluorescence quantum yield Φ_i of the donor in absence of acceptors, on its natural lifetime τ_i , on the refractive index n of the medium, on the geometrical factor G_{ij} , on the spectral overlap J_{ij} of the donor emission and the acceptor absorption spectra, and on the occupation probabilities p_i and p_j of the respective sites. N_A is the Avogadro number:¹² $$k_{Et}^{ij} = \frac{9000(\ln 10)}{128\pi^5 N_A n^4} \frac{\Phi_i}{\tau_i} G_{ij} J_{ij} p_i p_j$$ (7) The spectral overlap J_{ij} is equal to the integral of the corrected and normalized fluorescence intensity $f_i(\overline{\lambda})$ of the donor multiplied by the extinction coefficient $\varepsilon_j(\overline{\lambda})$ of the acceptor as a function of the wavenumber $\overline{\lambda}$: $$J_{ij} = \int_{0}^{\infty} \varepsilon_{j}(\overline{\lambda}) f_{i}(\overline{\lambda}) \frac{d\overline{\lambda}}{\overline{\lambda}^{4}}$$ (8) The absorption and fluorescence spectra of pyronine and oxonine in Figure 4 illustrate the large pyronine/pyronine, pyronine/oxonine and oxonine/oxonine spectral overlap which is one of the reasons why these dyes are well suited for the experiments discussed in this article. The geometrical factor G_{ij} takes into account the influence of the geometrical arrangement of a donor i and an acceptor j. It depends on the distance R_{ij} and on κ_{ij} . The latter describes the relative orientation in space of the transition dipole moments $(\mu_{S1 \leftarrow S0})_i$ and $(\mu_{S1 \leftarrow S0})_j$ of the donor i and of the acceptor j, respectively: $$G_{ij} = \frac{\kappa_{ij}^2}{R_{ij}^6} \tag{9}$$ The rate constant k_{Et}^d can be expressed as follows, for an energy transfer from an excited donor **d** to acceptors **a** as illustrated in Figure 3: $$k_{Et}^{d} = \sum_{a} k_{Et}^{da} = \frac{9000(\ln 10)}{128\pi^{5} N_{A} n^{4}} \frac{\Phi_{d}}{\tau_{d}} \sum_{a} G_{da} J_{da} p_{a}$$ (10) Figure 4. Absorption (solid) and corrected emission (dotted) spectra of Py—L and Ox—L suspended in water. The exchange degree θ of both samples was 0.004. The maxima of all spectra were adjusted to equal height. The spectral overlap of the two dyes are shaded; the pyronine/oxonine spectral overlap is not marked. In this equation p_d is equal to one and does therefore not appear, because we describe energy transfer from a donor which is excited with a probability equal to one. In addition, we average over many such events taking place in many different nano crystals with similar geometrical environment $\left\langle \sum_a G_{da} \right\rangle$. Since J_{da} also appears as an average quantity, eq (10) can be simplified as follows: $$k_{Et}^{d} = \frac{9000(\ln 10)}{128\pi^{5} N_{A} n^{4}} \frac{\Phi_{d}}{\tau_{d}} \langle J_{da} \rangle \langle \Sigma_{a} G_{da} \rangle p_{a}$$ $$\tag{11}$$ Inserting this expression into (6), we obtain: $$\frac{\Phi_F^A}{\Phi_F^D} = \left\{ \frac{k_F^A}{k_F^D \sum k_a^A} \frac{9000(\ln 10)}{128\pi^5 N_A n^4} \frac{\Phi_d}{\tau_d} \langle J_{da} \rangle \langle \Sigma_a G_{da} \rangle \right\} p_a \tag{12}$$ This equation tells us that the ratio of the acceptor to donor luminescence quantum yield is proportional to the donor occupation probability. Provided that all values in the curved brackets are kept constant we can write: $$\frac{\Phi_F^A}{\Phi_F^D} = C \bullet p_a \tag{13}$$ where C is equal to: $$C = \frac{k_F^A}{k_F^D \sum k_a^A} \frac{9000(\ln 10)}{128\pi^5 N_A n^4} \frac{\Phi_d}{\tau_d} \langle J_{da} \rangle \langle \Sigma_a G_{da} \rangle$$ (14) Equation (13) can best be tested by carrying out the second type of experiments mentioned at the beginning of this chapter, namely by working with a constant amount of zeolite L but by varying the amount of oxonine and pyronine. Under these conditions light scattering is constant. The results of such an experiment are illustrated in Figure 5 for occupations $p_a \approx 2^a \times 0.0015$, a = 0,1...4, which correspond to dye concentrations inside of each nanocrystal of $2^a \times 0.0006$ M. The experiment was carried out with zeolite L of 700 nm average length. The fluorescence spectra on the left side of Figure 5, measured after specific excitation of the pyronine, show that at the lowest loading the green emission of the pyronine with maximum at about 520 nm dominates. However, an increase of the loading causes this emission to decrease and the oxonine emission with a maximum at about 605 nm to increase. At highest Figure 5. Fluorescence spectroscopic examinations of 5 suspensions with $p_a = 0.0014$, 0.0036, 0.0072, 0.0144 and 0.0288 after specific excitation of the pyronine at 465 nm. Left: Fluorescence spectra normalized to the same peak height for the pyronine emission (band on the left at about 520 nm). The intensity of the oxonine emission (peak on the right) increases with increasing p_a . Right: Ratio of the fluorescence intensity Φ_{ox} of the acceptor (oxonine) and the donor (pyronine) Φ_{py} as a function of the loading p_a of the zeolite L.²⁸ loading p = 0.0288, which is still low, the oxonine emission clearly dominates. The ratio of the acceptor to donor fluorescence intensity illustrated on the right side of Figure 5 shows that the linear relation, eq 13, holds with a constant C = 1207. The bathochromic shift of the maximum of the pyronine emission band is due to self-absorption and reemission. Data reported in ref 9 for experiments carried out in a slightly different way show the same behavior. Energy transfer in the channels of zeolite L as illustrated in Figures 2 and 5 can also be used for measuring the insertion kinetics. For this a situation as illustrated in Figure 6 (see page 215) is prepared at the beginning of the experiment. Immediately after all dye molecules have entered the zeolite channels maximum energy transfer is observed because the donor to acceptor distance is short. When the molecules diffuse into the zeolite the donor to acceptor distance increases and hence the energy transfer rate decreases. From this the insertion kinetics can be derived. We have carried out such experiments successfully which will be reported elsewhere. A different approach was used for measuring the exit kinetics of an anionic dye. #### 4. EXCHANGE EQUILIBRIUM In the experiments described here insertion of the cationic dyes into the zeolite L channels was realized by means of ion exchange. For monovalent cations the exchange equilibrium is described by: $$ZY_{nbox-(r-1)}X_{r-1} + X_S^+ \to ZY_{nbox-r}X_r + M_S^+$$ (15) where x_3^+ and x_5^+ denote the dye cation and the metal cation in solution. Z stands for zeolite and Y describes the cation concentration inside of the zeolite. For monovalent cations and dyes witch occupy two unit cells in zeolite L we must use $Y_{nbox-r} = [(M_{18}^+)_{nbox-r} (M_{17}^+)_r]$ The parameter x_0^+ is equal to the number of sites in one channel and r counts the number of sites occupied by a dye. For e.g. a 300 nm long zeolite x_0^+ is equal to 200 because the length of a site is 1.5 nm for oxonine and pyronine. Equilibrium (15) corresponds to the situation expressed in the eqs (26) to (29) of our study on particle distribution in microporous materials. This means that the equilibrium constant x_1^+ can be expressed as: $$K_{r} = \frac{[ZY_{nbox-r}X_{r}][M_{S}^{+}]}{[ZY_{nbox-(r-1)}X_{r-1}][X_{S}^{+}]}$$ (16) We have shown that K_r depends as follows on r because the entropy of the system decreases with increasing loading (see Table 1 of ref 31): $$K_{r+1} = K_r \frac{r+1}{r} \frac{n_{box} - r - 1}{n_{box} - r} \tag{17}$$ The dependence of the equilibrium constant K_r as a function of the occupation probability for $K_1 = 3500$ shown in Figure 7 illustrates that ion exchange is complete for low loading, but that the situation changes for higher loading. This fact must be taken into account when doing experiments of the type described in this article. Figure 7. Equilibrium constant for ion exchange of a monovalent cation in zeolite L with a cationic dye molecule with charge +1, as a function of the occupation probability p_r , calculated for $K_1 = 3500$. #### 5. VERY FAST ENERGY MIGRATION We have recently reported extremely fast electronic excitation energy migration along the axis of cylindrical crystals of pyronine loaded zeolite L nano crystals modified on both ends with oxonine as luminescent traps. We have good evidence that the antenna property of this system is governed by Föster-type energy migration. It is supported by an increase of the effective excitation lifetime because of donor-donor self-absorption and reemission. Because of the pronounced anisotropy of the material we expect that the polarization of the donor-donor self-absorption and reemission is the same as the polarization of the absorbed and of the emitted light as indicated in Figure 8 (see page 216). Two kinds of stationary experiments give useful information: one is to measure the trapping efficiency as a function of the loading and the other is to measure it as a function of the length of the nano crystals. Both have been carried out by us. 10 The trapping efficiency T_{∞} is equal to the sum of the excitation probabilities of all trapping sites at infinite time after irradiation. In a system where donors and traps have a luminescence quantum yield of one and where the traps are excited exclusively by receiving energy from the donors, the trapping efficiency corresponds to the ratio of the luminescence intensity of the traps divided by the total luminescence. In the experiments described here, the donors which absorb light are pyronine while the traps are oxonine molecules. Their luminescence intensity is given by I_{py} and I_{ox} , respectively. We have shown that for this system the following simple relation holds. 10,12 $$T_{\infty} = \frac{I_{ox}}{I_{py} + I_{ox}}$$ (18) An experiment which demonstrates the extremely fast energy migration is illustrated in Figure 9. In this experiment effective energy migration lengths of up to 166 nm where observed; see Table 1 of ref 10. Note that only the emission maximum of the donor (pyronine) shifts to longer wavelength with increasing loading. The emission maximum of the acceptor which is oxonine, placed at both ends of the cylindrical crystals, does not shift. The reason for this is that its concentration is always low and the same in each experiment. We have recently improved the material and the experimental techniques and we have observed migration lengths of up to about 200 nm on thin dye-zeolite layers coated on glass.⁸ Figure 9. Energy migration in pyronine-loaded nano crystals as observed by the oxonine fluorescence at different pyronine loading p_{py} , increasing from 1 to 2, 3, 4, 5 by a factor of about 2 each time; $p_{py}(1) \approx 0.03$. We show the relative intensity of fluorescence spectra recorded after specific excitation of only pyronine molecules at 470 nm scaled to the same height at the maximum of the pyronine emission. The amount of front-back located oxonine traps corresponds on average to one molecule at the front and one at the back of each channel in all samples. #### 6. EXTERNAL TRAPPING So far experiments on energy transfer, energy migration and trapping taking place inside of the dye loaded zeolite nano crystals have been discussed. In order to realize devices of the type illustrated in Figure 1 radiationless energy transfer to an external acceptor is needed. The principle of an experiment to probe for energy transfer to a trap located at the outside of a nanocrystal is illustrated in Figure 10. Energy is absorbed by a donor located somewhere inside of the crystal, it then migrates very fast to one of the ends of the cylinder where it is trapped by an acceptor which itself is able to transfer the energy to an external acceptor. The internal acceptor is not necessary but it is convenient in many cases. We have carried out a number of such experiments from which I report two relatively simple ones, both realized without an internal acceptor. The first consists of placing a molecule which is too large to enter the channels of zeolite L at the surface. This molecule should have a large spectral overlap with the donor molecules located inside of the nano crystals. We know that cationic dyes such as methyleneblue, ethyleneblue, cresylviolet and others readily adsorb at the zeolite L nano crystal surface and that they do not enter the channels.³² Here we show an experiment in an aqueous dispersion carried out with cresylviolet, the formula of which is given in Scheme 3. The results illustrated in Figure 11 show that external trapping works well. Experiments with methyleneblue as an external trap lead to similar results.²¹ Scheme 3: Cresylviolet used as an external quencher molecule. Figure 11. Left: Spectral overlap between the absorption spectrum of the external quencher (cresylviolet, solid) and the fluorescence spectrum of internal donor (pyronine, dotted). Right: Fluorescence of the pyronine as a function of the cresylviolet adsorbed on the outside of the nano crystals. The pyronine loading was about 0.006. The amount of cresylviolet on the outside increases from 1 to 2,3,4,5. Its concentration was in each case so low, that possible absorption of the pyronine luminescence by the quencher remained unimportant.^{21,33} The second experiment I would like to report was carried out on a thin oxonine loaded zeolite L layer on glass onto which in one case different amounts of gold and in the other case different amounts of silicon were evaporated. In both cases quenching of the pyronine luminescence was observed, which was however, more pronounced in the case of gold. Results on the quenching of the pyronine fluorescence as a function of the amount of gold deposited onto the zeolite nano crystals are reported in Figure 12 for two different pyronine loading. Care was taken that light absorption by the gold deposited on the nanocrystal did not disturb the experiment. I would like to draw attention in this context to the optical pumping of dye-complexed and sensitized porous silicon increasing photoemission rates.³⁵ Figure 12. Quenching of the oxonine luminescence of an oxonine loaded zeolite L nano crystals coated as a thin layer on glass by vapor deposition of gold. The pyronine loading was about 0.065 (circles) and 0.025 (diamonds). The absolute thickness d of the gold layer given in Å could not be measured precisely in these experiments but the relative values are sufficiently precise.³⁴ We conclude that the fascinating properties of the systems discussed in this article give rise to many speculations on potential applications. The antenna properties can perhaps be used in realizing a new type of photovoltaic devices in which the absorption of light and the creation of an electron-hole pair are spatially separated, as illustrated in Figure 1. Contributions to new imaging techniques, data storage, specific biological and medical applications can be imagined. The antenna nano crystals can also be regarded as candidates for realizing a new type of electronic screen with high spatial resolution. The extremely fast energy migration, the pronounced anisotropy, the geometrical constraints, and the high concentration of monomers which can be realized have much potential in leading to new photo physical phenomena. #### ACKNOWLEDGEMENT This work was supported by the Swiss National Science Foundation Project NFP 36(4036-043853), project NF 2000-053414/98/1 and by the Bundesamt für Energiewirtschaft, Projekt 10441. I would like to thank Urs Graf for measuring the data reported in Figure 5. I would also like to thank David Schürch and Michel Pfenniger for reading this manuscript carefully and for many helpful suggestions. #### REFERENCES - 1. Meier, W.M.; Olson, D.H.; Baerlocher, Ch. Atlas of Zeolite Structure Types; Elsevier; London 1996. - Breck, D.W. Zeolite Molecular Sieves; John Wiley & Sons: New York, 1974. - 3. Ohsuna, T.; Horikawa, Y.; Hiraga, K. Chem. Mater. 1998, 10, 688. - 4. Külbrandt, W.; Wang, D.N. Nature 1991, 350, 130. - 5. Fetisova, Z.G.; Freiberg, A.M.; Timpmann, K.E. Nature 1988, 334, 633. - Sundström, V.; Pullerits, T.; van Grondelle, R. J. Phys. Chem B 1999, 103, 2346. Arnette, D.C.; Moser, C.C.; Dutton, P.L.; Scherer, N.F. ibid 2014. Vulto, S.I.E.; Kennis, J.T.M.; Streltsov, A.M.; Amesz, J.; Aartsma, T.J. ibid 878. - 7. Calzaferri, G. Chimia 1998, 52, 525. - 8. Megelski, S.; PhD Thesis 2000, University of Berne, in preparation. - 9. Gfeller, N.; Megelski, S.; Calzaferri, G. J. Phys. Chem B 1998, 102, 2433. - 10. Gfeller, N.; Megelski, S.; Calzaferri, G. J. Phys. Chem B 1999, 103, 1250. - 11. Hennessy, B.; Megelski, S.; Marcolli, C; Shklover, V.; Bälocher, Ch.; Calzaferri, G. J. Phys. Chem. B 1999, 103, 3340. - 12. Gfeller, N.; Calzaferri, G. J. Phys. Chem. B 1997, 101, 1396. - 13. Vietze, U.; Krauss, O.; Laeri, F.; Ihlein, G.; Schüth, F.; Limburg, B.; Abraham, M. Phys. Rev. Letters 1998, 81, 4628. - 14. Balzani, V.; Campagna, S.; Denti, G.; Juris, A.; Seroni, S.; Venturi, M. Acc. Chem. Res. 1998, 31, 26. - Yamazaki, I.; Tamai, N; Yamazaki, T. J. Phys. Chem 1990, 94, 516. Bücher, H.; Drexhage, K.H.; Fleck, M.; Kuhn, H.; Möbius, D.; Schäfer, F.P.; Sondermann, J.; Sperling, W.; Tillmann, P.; Wiegand, J. Mol. Cryst. 1967, 2, 199. - 16. Lainé, P.; Lanz, M.; Calzaferri, G. Inorg. Chem. 1996, 35, 3514. - 17. Bockstette, M.; Wöhrle, D.; Braun, I.; Schulz-Ekloff, G. *Microp. Mesop. Mater.* 1998, 23, 83. - 18. Schüth, F. Chemie i.u. Zeit 1995, 29, 42. - Ramamurthy, V., Photochemistry in Organized & Constrained Media, VCH Inc. 220 East 23rd Street, Suite 909, New York 1991. Ramamurthy, V. Chimia 1992, 46, 359. - Ehrl, M.; Deeg, F. W.; Bräuchle, C.; Franke, O.; Sobbi, A.; Schulz-Ekloff, G.; Wöhrle, D. J. Phys. Chem. 1994, 98, 47. Caro, J.; Marlow, F.; Wübbenhorst, M. Adv. Mater. 1994, 6, 413. Wöhrle, D.; Schulz-Ekloff, G. Adv. Mater. 1994, 6, 875. Hoffmann, K.; Marlow, F.; Caro, J. Zeolites 1996, 16, 281. - Binder, F.; Calzaferri, G.; Gfeller, N. Sol. Ener. Mat. Sol. Cells 1995, 38, 175. Binder, F.; Calzaferri, G.; Gfeller, N. Proc. Ind. Acad. Sci (Chem.Sci) 1995, 107, 753. - 22. Kuhn, H. J. Chem. Phys. 1970, 53, 101. - 23. Lainé, P.; Seifert, R.; Giovanoli, R.; Calzaferri, G. New. J. Chem. 1997, 21, 453. - 24. Föster, Th. Ann. Phys (Leipzig) 1948, 2, 55. Föster, Th. Fluoreszenz organischer Verbindungen; Vandenhoeck & Ruprecht; Göttingen 1951. - 25. Baumann, J.; Calzaferri, G.; Hugentober, T. Chem. Phys. Letters 1985, 116, 66. - 26. Hammond, P.R. J. Chem. Phys. 1979, 70, 3884. - 27. Batchelder, J.S.; Zewail, A.H.; Cole, T. Applied Optics 1979, 18, 3090. - 28. Graf, U. Diploma Thesis 2000, University of Berne, in preparation. - 29. Pfenniger, M.; PhD Thesis, University of Berne, in preparation. - 30. Brühwiler, D.; Gfeller, N.; Calzaferri, G.; J. Phys. Chem B 1998, 102, 2923. - 31. Kunzmann, A.; Seifert, R.; Calzaferri, G. J. Phys. Chem. B 1999, 103, 18. - 32. Calzaferri, G.; Gfeller, N. J. Phys. Chem. 1992, 96, 3428. - 33. Binder, F. PhD Thesis, University of Berne 1996. - 34. van der Wielen, M. part of Diploma Thesis, University of Berne 1995. - 35. Gole, J.L. DeVincentis, J.A.; Seals, L. J. Phys. Chem. B 1999, 103, 979.