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Summary. — Artificial photonic antenna systems have been built by incorpo-
rating organic dyes into one-dimensional nanochannel materials. We have been
focusing on zeolite L as a host in most of our experiments since it has proved
to be very versatile. Zeolite L consists of strictly parallel channels arranged in a
hexagonal framework. The size and aspect ratio of the colorless crystallites can be
tuned over a wide range. Its one-dimensional channels can be filled with suitable
organic guests. Geometrical constrains of the host structure lead to supramolecular
organization of the guests in the channels. Thus very high concentration of non- or
very weakly interacting dye molecules can be realized. A special twist is added to
these systems by plugging the channel openings with a second type of fluorescent
dye, which we call stopcock molecule. The two types of molecules are precisely
tuned to each other; the stopcocks are, e.g., able to accept excitation energy
from the dyes inside the channel, but cannot pass it back. The supramolecular
organization of dyes inside the zeolite channels is what we call the first stage of
organization. It allows light harvesting within the volume of a dye-loaded zeolite
L crystal and also radiationless energy transport to either the cylinder ends or to
the centre. One-dimensional excitation energy transport was observed in these
dye-zeolite L guest-host materials. The second stage of organization represents
the coupling to an external acceptor or donor stopcock fluorophore at the ends
of the zeolite L channels, which can then trap or inject electronic excitation
energy. The third stage of organization is obtained by interfacing the material
to an external device via a stopcock intermediate. We explain the theoretical
and conceptual background of these systems by using a simple approach which
promotes the intuitive understanding. The focus is on molecules, materials and
phenomena in which the interaction energy between the donor and the acceptor
is small in the electronic ground state and also in the electronically excited state.
The chromophores consist essentially of a positively charged backbone and some
delocalized electrons. The energy of an absorbed photon is transformed into
kinetic energy of one of these electrons. This fast moving electron causes an
oscillating electromagnetic field. A neighboring molecule bearing states that are
in resonance can interact. We consider systems in which the “optical electrons”
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associated with the individual component molecules (or chromophoric units) pre-
serve essentially their individual character and we describe the consequences of the
interaction under this condition. The outcome of the resulting electronic transitions
dipole moment coupling is Förster resonance energy transfer (FRET) and exciton
splitting.

PACS 71.35.-y – Excitons and related phenomena.
PACS 81.07.Pr – Organic-inorganic hybrid nanostructures.
PACS 82.75.-z – Molecular sieves, zeolites, clathrates, and other complex solids.
PACS 82.75.Mj – Measurements and simulation of properties (optical, structural)
of molecules in zeolites.

1. – Introduction

Atoms, molecules, clusters, and solids can exist in many different states in which they
have the possibility to exchange energy. Exchange of any kind of energy between atoms
and molecules is responsible for the very short lifetime of excited rotational and vibra-
tional states of molecules in gases at medium and at high pressure and especially in con-
densed phase [1]. There are cases where near-field interactions are governing the energy
exchange processes, while usually mechanical contact or some overlap of the electronic
wave functions between the interacting molecules is needed. Near-field interaction occurs
at distances shorter than half the wavelength of a free photon. In molecular crystals and
in some polymers which contain the right type and arrangement of chromophores, energy
quanta can be transported as bound electron-hole packages over considerable distances.
Exchange of energy between molecules at larger distances can either occur via electronic
excitation energy migration among equal molecules or via emission and absorption of
photons. The latter process is considered as trivial mechanism [2-5].

Green plants have developed very sophisticated tools for trapping and transporting
electronic excitation energy in their antenna system. Photosynthesis is the process by
which plants, some bacteria, and some protistans use the energy from sunlight to produce
sugar which cellular respiration converts into ATP, the “fuel” used by all living things.
The conversion of sunlight energy into chemical energy is associated with the actions of
the green pigment chlorophyll. Most of the chemistry associated with photosynthesis is
understood at a reasonably precise level and although refinements continue to be made,
the basic understanding is in place [6].

The detailed structure of the antenna system of purple bacteria has been resolved.
It consists of regular arrangements of chlorophyll molecules held at fixed positions by
means of proteins [7]. Light absorbed by any of these chlorophyll molecules is transported
to the reaction center, providing the energy necessary for the chemical processes to
be initiated. A green leaf consists of millions of such well-organized antenna devices.
Recreating this system in the laboratory would be a hopeless task—at least regarding
the current possibilities of chemists. What can be done? First we should understand
the basic principles that govern transport of electronic excitation energy. Fortunately,
this understanding is very advanced. It goes back to the pioneering work of Theodor
Förster [4]. A chlorophyll molecule consists essentially of a positively charged backbone
and some delocalized electrons. The energy of an absorbed photon is transformed into
kinetic energy of one of these delocalized electrons. This fast moving electron causes
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an oscillating electromagnetic field. A neighboring acceptor molecule A, bearing states
that are in resonance with the excited state of the donor D∗, can take over the excitation
energy. Radiationless electronic excitation energy transfer is due to very weak interaction
between excited configurations of the initial state (D∗ . . . Ai) and that of the final state
(D . . . Ai

∗).

(1) (D∗ . . . Ai)
kEnT(i)−−−−−→ (D . . . Ai

∗).

In such a system the “optical electrons” associated with individual component molecules
(or chromophoric units) preserve essentially their individual characteristic. The donor D
and the acceptor A can be the same sort of molecules or they can be different. Förster
observed that the rate constant kEnT for the transfer from one electronic configuration
to the other can be expressed as a product of three terms: a geometrical term G that
describes the distance and angular dependence of the rate constant, a term DA specific
for the chromophores involved, taking into account the resonance condition and the
electronic transition dipole moments (ETDM) of the donor and the acceptor, and a
factor S which takes the environment into account:

(2) kEnT ∝ G · DA · S.

Our design of a model that mimics the key functionality of the antenna system of green
plants was inspired by experience we had with different zeolite materials [8,9]. Properties
of molecules, complexes and clusters inside the cavities and channels—apart from the in-
terest in catalysis—have been investigated by several authors [10]. We reasoned that a
one-dimensional channel system has the advantage of being the simplest possible choice.
This is illustrated in fig. 1. The donor molecules are represented in green and the accep-
tors in red (colour on-line version). The donor that has been excited by absorbing an
incident photon transfers its electronic excitation to an unexcited neighbor. After series
of such steps, the electronic excitation reaches a luminescence trap (acceptor molecule)
and is then released as fluorescence. The acceptors are thought to mimic the “entrance
of the reaction center” of the natural antenna. The dimensions given in fig. 1 correspond
to the pore opening and the distance between the centers of two channels in zeolite L.
According to Förster theory, the largest energy transfer rate constant is observed if the
ETDM are oriented parallel to the channel axis. Electronic excitation energy transport
can be extremely fast in such systems because of its low dimensionality.

Different materials bearing one-dimensional channels can be envisaged for realizing
the situation explained in fig. 1. We found that zeolite L is a good host for supramolecular
organization of dyes because synthesis of zeolite L crystals of different morphology in the
size range of 30 nm up to about 10000 nm is well established, which means that it is pos-
sible to cover about 7 orders of magnitude in terms of volume [11]. We therefore focus on
systems based on zeolite L as a host. The theoretical reasoning is, however, also valid for
other host materials with similar properties. The structure and morphology of zeolite L is
explained in fig. 2. The primary building units are TO4 tetrahedra where T is equal to Al
or Si. Connecting them by means of oxygen bridges one obtains the hexagonal arrange-
ment of the channels. The composition of zeolite L is (M+)9[(AlO2)9(SiO2)27] × nH2O,
where M+ are monovalent cations, compensating the negative charge resulting from the
aluminium atoms. n is 21 in fully hydrated materials, and 16 at about 22% relative
humidity [12].
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Fig. 1. – (Colour on-line) Schematic view of an artificial photonic antenna. The chromophores
are embedded in the channels of the host. The green dyes act as donor molecules which absorb
the incoming light and transport the excitation via Förster energy transfer to the red acceptors
shown at the ends of the channels on the right. The process can be analyzed by measuring the
emission of the red acceptors and comparing it with that of the donors.

It is useful to imagine zeolite L as consisting of a bunch of strictly parallel channels
as shown in fig. 2D [13]. The channels have a smallest free diameter of about 7.1 Å, the
largest diameter inside is 12.6 Å. The distance between the centers of two channels is
18.4 Å. Each zeolite L crystal consists of a large number nch of channels which can be
estimated as follows:

(3) nch = 0.267(dZ)2,

where dZ is the diameter of the crystal in nm. For example, a crystal of 600 nm di-
ameter consists of nearly 100000 strictly parallel channels. The ratio of the void space
available in the channels with respect to the total volume of a crystal is about 0.26. An
important consequence is that zeolite L allows realizing extremely high concentrations
of well-oriented molecules that behave essentially as monomers. A 30 nm crystal can

Fig. 2. – Zeolite L. A) Top view of the framework of zeolite L, illustrating the hexagonal structure.
It shows a channel surrounded by six neighboring channels. B) Side view of a channel that
consists of 0.75 nm long unit cells with a van der Waals opening of 0.71 nm at the smallest and
1.26 nm at the widest place. The double arrow indicates the ETDM of the molecule. C) SEM
image of zeolite L crystals with a diameter of about 600 nm. D) Schematic view of the channels.
The center-to-center distance between two channels is 1.84 nm.
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Fig. 3. – Packing of dyes in the channel. Left: simplified view of different orientations and two
arrangements of molecules in a channel. The orientation of the ETDM is indicated by a double
arrow. Top: the molecule on the left is small enough to fit into one unit cell and its shape is such
that the ETDM is oriented nearly perpendicular to the channel axis. Then we see a molecule
that occupies two unit cells and is oriented at about 45◦. The next molecule is so large that it
can only align parallel to the c-axis of the crystal. On the right we illustrate a situation where
two molecules come so close that their orientation and their optical properties are influenced
by the packing. Middle: orientation of large molecules which align parallel to the channel axis
because of their size and their shape. Bottom: stacking of molecules of appropriate size and
shape, leading to excitonic states. Right: dense packing of the perylene dye PR149 (upper) and
of cyanine dye PC21 (lower).

bear nearly 5000 dye molecules that occupy 2 u.c., while a 60 nm crystal can host nearly
40000. This is extremely interesting!

Here we focus on situations where molecules behave in the states of interest as in-
dividuals, which means that the “optical electrons” associated with the chromophoric
units preserve essentially their individual characteristic, who, however, can communicate
with each other. We are interested in molecules that are so large that they cannot pass
each other inside of the channels and that cannot sit on top of each other, as illustrated
in fig. 3 where we show a simplified view of different orientations and two arrangements
of molecules in a channel. The geometrical constraints imposed by the host which deter-
mine the orientation of the dye molecules inside the channels and hence the orientation
of the ETDM, indicated by a double arrow, is schematically explained in fig. 3 (left).
Exciton splitting becomes important at sufficiently short distance between the ETDM of
neighboring molecules.

Försters theory leads to a simple expression for the energy transfer rate constant that
contains only experimentally accessible parameters. This is of great value. The theory
has been generalized in order to also meet more complex situations [2, 3]. Here we
explain the rate equation for FRET by following the arguments given in the original
work of Förster and we describe exciton coupling based on Davydov’s theory [4, 14, 15].
The results have been found to be very useful for designing and understanding organize
systems based on nanochannel materials [9, 13, 16, 17]. The discussion is restricted to
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Table I. – Formula and abbreviations of dyes.

one-photon processes and ambient temperature conditions. This means that processes
in which two or more electronically excited molecules interact with each other leading
to phenomena such as annihilation processes, super radiance, lasing and others but also
very low temperature situations where shallow traps may be important are not discussed.
Energy transfer is abbreviated as EnT in order to distinguish from electron transfer, for
which ET has often been used. Table I shows the structure and the abbreviations of the
dyes discussed in this paper.

2. – Electronic transion moment coupling

For excitation energy transfer from an electronically excited molecule D∗ to an accep-
tor A, some interaction between the two molecules is required. Energy transfer can take
place if the acceptor molecule possesses transitions which are isoenergetic with those of
the excited donor. Transitions between states which are in resonance are abbreviated as
RET for resonance energy transfer.

We assume as an illustrative example, fig. 4, that the energy separation between
two vibrational states (v, v + 1) of the donor and (v′, v′ + 1) of the acceptor is the same.
We further assume that the energy difference ΔE between the electronic (0,0′) transitions
of D and A is twice this separation. ΔE reflects only fluctuations in the environment and
temperature if the donor and the acceptor are the same type of molecules. The following
RET processes can take place:

D∗(0′) + A(0) → D(2) + A∗(0′),(4)
D∗(0′) + A(0) → D(1) + A∗(1′),
D∗(0′) + A(0) → D(0) + A∗(2′).

Transfer of electronic excitation energy can result from different interaction mechanisms.
Considering that only two electrons are involved in a transition, one on D and one on A,
the antisymmetric electronic wave functions of the initial excited state Ψi (D excited
but not A) and of the final excited state Ψf (A excited but not D) can be expressed as
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Fig. 4. – Energy levels of a donor molecule D and an acceptor molecule A. The vibrational
states in the electronic ground state are labeled as 0, 1, 2, etc. and those in the excited state as
0′, 1′, 2′, etc. The arrows indicate electronic transitions for which the pairs (0′2; 00′), (0′1; 01′)
and (0′0; 02′) are in resonance.

follows, where the numbers 1 and 2 refer to the involved electrons:

Ψi =
1√
2
(ΨD∗(1)ΨA(2) − ΨD∗(2)ΨA(1)),(5)

Ψf =
1√
2
(ΨD(1)ΨA∗(2) − ΨD(2)ΨA∗(1)).(6)

The interaction term β between the initial and the final state is

(7) β = 〈Ψi|H ′|Ψf 〉.

H ′ is the perturbation part of the Hamiltonian

(8) Ĥ = ĤD∗ + ĤA + H ′.

Inserting (5) and (6) in (7) we obtain

(9) β=
〈

1√
2
(ΨD∗(1)ΨA(2)−ΨD∗(2)ΨA(1))

∣∣∣∣ H ′
∣∣∣∣ 1√

2
(ΨD(1)ΨA∗(2)−ΨD(2)ΨA∗(1))

〉
.
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This expression can be divided in two parts:

〈ΨD∗(1)ΨA(2)|H ′|ΨD(1)ΨA∗(2)〉 = 〈ΨD∗(2)ΨA(1)|H ′|ΨD(2)ΨA∗(1)〉 = βC,(10)
〈ΨD∗(1)ΨA(2)|H ′|ΨD(2)ΨA∗(1)〉 = 〈ΨD∗(2)ΨA(1)|H ′|ΨD(1)ΨA∗(2)〉 = βex.(11)

Hence, β can be written as a sum of two terms:

(12) β = βC − βex.

The Coulomb term βC describes a situation in which the initially excited electron on
D∗ returns to the ground-state orbital, while an electron on A is simultaneously pro-
moted to the excited state. The exchange term βex describes a situation which can be
understood as an exchange of two electrons, one on D and one on A. The Coulomb and
the exchange interaction lead to two distinctly different EnT mechanisms, illustrated in
fig. 5. We observe that an exchange of electrons between D and A change takes place
in the exchange interaction. This is not the case in the Coulomb mechanism where no
electrons are exchanged. The exchange term βex represents the electrostatic interaction
between the charged clouds. In order not to vanish, overlap of the electron clouds is
a prerequisite and, hence, energy transfer due to exchange interaction requires overlap
of the wave functions of D∗ and A, similar as in electron transfer reactions. This is a
short-range interaction. For two electrons separated by a distance r12 in D∗ . . . A, the
perturbation H ′

ex is

(13) H ′
ex =

e2

4πε0

1
r12

,

where e is the elementary charge of an electron and ε0 the vacuum permittivity [5].
The Coulomb term can be expanded into a sum of terms (multipole-multipole series)

(14) βC = Vdd + Vqd + Vdq + Vqq + . . . ,

where Vdd is the dipole-dipole interaction, Vqd the quadrupole-dipole interaction and so
on. We focus on situations where the dipole-dipole interaction term between the ETDM
μD∗D and μAA∗ of D and A for the transitions D∗ → D and A → A∗ in an environment
of refractive index n is dominant. The perturbation H ′

C can then be expressed by means
of eq. (15), where lD∗ and lA are the positions of the ETDM which are at distance RD∗A

and where κD∗A takes the relative orientation of the ETDM of the donor and the acceptor
into account, see the scheme in fig. 6.

H ′
C =

e2

4πε0n2

1
RD∗A

3 lD∗ lAκD∗A,(15)

κD∗A = sin θ1 sin θ2 cos φ12 − 2 cos θ1 cos θ2.(16)

The rate constant kEnT for electronic excitation energy transfer in the weak-coupling
limit can be expressed according to Fermi’s Golden rule as follows [2]:

(17) kEnT =
2π

h̄
βC

2ρ.
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Fig. 5. – Electronic excitation energy transfer. Representation of the exchange (upper) and
the Coulomb interaction mechanism (lower). HOMO and LUMO refer to the highest occupied
molecular orbital and to the lowest unoccupied molecular orbital, respectively.

Fig. 6. – Angles describing the relative orientation of the ETDM of two molecules, μ1 and μ2.
The numbers 1 and 2 refer not only to the corresponding electrons but are also used to identify
the two species. Top: representation of the ETDM as oscillators. Bottom: vector representation
of the ETDM.
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ρ is a measure of the density of the interacting initial D∗ . . . A and final D . . . A∗ states.
It is related to the overlap between the emission spectrum of the donor and the absorption
spectrum of the acceptor. Direct evaluation of eq. (17) by means of numerical quantum
chemical calculations of different degrees of sophistication has been performed [18, 19]
and intermolecular electronic excitation energy transfer in a confined space has been
examined [20].

2.1. Weak interaction between a molecule in an electronically excited state and a
molecule in the ground state. – For very weak interaction between excited and unexcited
molecules, e.g., less than 100 cm−1, the electronic spectrum of a mixture of donors and
acceptors, measured under ambient conditions, will be almost an exact superposition of
the separate spectra of diluted solutions of donors and of acceptors. Stronger interactions
lead to exciton splitting. In order to evaluate the rate constant kEnT for excitation energy
transfer from an electronically excited donor D∗ and an acceptor A, we must calculate the
product βC

2ρ, according to eq. (17). The wave functions for the initial (i) and the final
(f) states and the perturbation Hamiltonian H ′

C are given in eqs. (18), (19) and (15).

Ψi = ΨD∗ΨA,(18)
Ψf = ΨDΨA∗ .(19)

Inserting this in

(20) βC = 〈Ψi|H ′
C|Ψf 〉,

we can write

(21) βC =
1

4πε0n2

1
RDA

3 |〈ΨD∗ |elD|ΨD〉||〈ΨA|elA|ΨA∗〉|κD∗A.

The two matrix elements are equal to the ETDM μD∗D and μAA∗ :

μD∗D = 〈ΨD∗ |elD|ΨD〉,(22)
μAA∗ = 〈ΨA|elA|ΨA∗〉,(23)

where lD and lA are the position vectors of the electrons belonging to D and A, respec-
tively.

(24) βC =
1

4πε0n2

1
RDA

3 |μD∗D||μAA∗ |κD∗A.

This equation not only forms a basis for describing the rate constant kEnT but it also
gives information about the influence of the ETDM interaction on the electronic states
of D∗ and A.

2.2. Exciton splitting . – We consider a pair of chromophores Ai and Ak at a distance R
which is such that their interaction in the electronic ground state is negligibly small. We
further assume that the overlap of the wave functions in the electronically excited states
Ai

∗ . . . Ak and Ai . . . Ak
∗ between the neighbors (Ai

∗ and Ak) and (Ai and Ak
∗) is neg-

ligible. This means that the “optical electrons” associated with the chromophoric units
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preserve essentially their individual characteristic. This does, however, not necessar-
ily mean that the interaction βC between the electronically excited-state configurations
(Ai

∗ . . . Ak) and (Ai . . . Ak
∗) is so weak that the splitting of the corresponding states is

negligible. The ETDM’s μA∗A and μAA∗ have the same value, hence, eq. (24) can be
written as follows:

(25) βC =
1

4πε0n2

|μAA∗ |2
RDA

3 κA∗A,

where κA∗A is defined by eq. (16). The wave function of the ground state and of the
electronically excited states can be expressed as follows:

ΨAiAk
= ΨAi

ΨAk
,(26)

ΨA∗
i Ak

= ΨA∗
i
ΨAk

,(27)
ΨAiA∗

k
= ΨAi

ΨA∗
k
.(28)

We denote the energy of the electronic ground state ΨAiAk
as E0 and that of the elec-

tronically excited states ΨA∗
i Ak

and ΨAiA∗
k

in the absence of any interaction between
them as E1. In the presence of some interaction, as expressed by the perturbation H ′

C,
the excited state is more accurately described by means of a linear combination of the
wave functions (27) and (28):

(29) Φ(c1, c2) = c1ΨA∗
i Ak

+ c2ΨAiA∗
k
.

From this we find

(30) 〈Φ(c1, c2)|H|Φ(c1, c2)〉 = ε〈Φ(c1, c2)|Φ(c1, c2)〉,

where H is equal to Hi + Hk + H ′
C. Evaluating this by keeping in mind that, according

to the conditions mentioned above, the overlap integral 〈ΨA∗
i Ak

|ΨAiA∗
k
〉 is zero, we obtain

(31)
∣∣∣∣h11 − ε h12

h21 h22 − ε

∣∣∣∣ = 0

and

Φ+ =
1√
2

(
ΨA∗

i Ak
+ ΨAiA∗

k

)
,(32)

Φ− =
1√
2

(
ΨA∗

i Ak
− ΨAiA∗

k

)
.(33)

The values of h11 and h22 are equal to E1 while h12 and h21 are equal to βC, eq. (25).
This leads to

(34) ε+ = E1 + βC, ε− = E1 − βC.

Interchange of the molecular labels i, k indicates that Φ+ is symmetric, while Φ− is
antisymmetric. The excitation is on both molecules i and k in both stationary states Φ+
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Fig. 7. – Phase relation and energy level diagram. Left: diagram showing the phase relation of
the wave functions eqs. (32), (33) which describe the interaction caused by the ETDM between
the electronically excited-state configurations Ai

∗ . . . Ak and Ai . . . Ak
∗. Right: energy level

diagram showing the exciton splitting of two chrompophores caused by the interaction of the
configurations due to the ETDM. This interaction naturally causes only a splitting of electroni-
cally excited states and has no consequences on the ground state. The different splitting of the
excited-state levels for ETDM oriented in-line or parallel, as represented by means of double
arrows, is due to the angle dependence of κAA∗ . The allowed electronic transitions are indicated
by the dotted arrows.

and Φ−. The excitation is collective or delocalized. The node corresponding to the minus
sign in Φ− is an excitation node. At an excitation node, the relation between the ETDM
of the respective molecular centers changes phase. We explain this in fig. 7 (left) for an
arrangement of the ETDM with φ12 = 0 and θ1 = θ2 which is frequently observed for
dyes in nanochannels, as illustrated in fig. 3. Inserting these values into eq. (16) results
in the simplified expression (35):

(35) κAA∗ = 1 − 3 cos2 θ.

The value of βC is largest for in-line orientation and changes sign for parallel orientation.
We illustrate this in the energy level diagram in fig. 7 (right). Situations with essentially
in-line arrangement of the ETDM, lead to J-coupling, while those with essentially parallel
arrangement lead to H-coupling. The corresponding arrangements of the chromophores
are often named as J-aggregates and H-aggregates, respectively [15], names which are
less meaningful in the present context.

According to eq. (35), the crossing of the Φ+ and Φ− levels occurs if cos2(θ) is equal to
0.333 which is the case if θ is equal to the magic angle of 54.7◦. The order of magnitude
of the expected splitting |2βC| can be estimated using the relation between the oscillator
strength f of the electronic transition and the magnitude of the ETDM:

(36) f =
8πcme

3he2
ῡ|μAA∗ |2,

where e is the elementary charge, h is Plank’s constant, me the electron mass, c the
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Fig. 8. – Comparison of the length of PR149 (2.2 nm) with the ETDM (0.19 nm), aligned in a
zeolite L channel.

speed of light in vacuum and ν̄ the energy in cm−1 of the transition A → A∗ [21, 22].
This equation is also useful for estimating the length of the ETDM. This is important
because the validity of the dipole-dipole coupling theory depends on the condition that
the distance between the ETDM of the two involved chromophores is large with respect
to the length of the ETDM lμ∗ . Solving eq. (36) for μA∗A, dividing it by the elementary
charge and inserting the constants leads to

(37) lμ∗ = 3.036 × 10−6 cm0.5

√
f

ῡ
.

From this equation we find, as an example, the length of the ETDM of an organic molecule
with an oscillator strength of f = 1 absorbing at 500 nm to be 0.215 nm. This means
that the distance between the molecules of interest in the zeolite L channels is in general
large enough so that the dipole-dipole coupling approach can be considered as a good
approximation. We illustrate this for PR149 (scheme in fig. 8) for which we calculate
the length of the ETDM to be about 0.19 nm while the shortest distance between two
molecules in the channels of zeolite L is about 2.2 nm.

Inserting eq. (36) in the expression for βC, eq. (25) leads to eq. (38):

(38) βC =
3he2

32π2cmeε0

f

ῡ

κA∗A

RDA
3

1
n2

.

It is convenient to substitute the constant term by writing

(39) βC = AD
f

ῡ

κA∗A

RDA
3

1
n2

.

The value of the constant AD is equal to 1.615 × 10−18 m2 cm−1 if we express βC in
cm−1, which is convenient.

We discuss some consequences of this by using a perylene dye as example because
these dyes have been used in different experiments [16, 23] and because they are well
aligned parallel to the channel axis, which means that the angles φ12, θ1 and θ2 are
approximately zero, and because dyes with different types of subtituents R are know
where R does not affect the electronic spectra of the molecules. The substituent R,
however, determines the shortest distance between two chromophores at high packing
which simplifies the discussion. This is useful for studying the dipole-dipole coupling
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Fig. 9. – Exciton splitting of the stationary states Φ− and the Φ+ caused by the J-coupling as
a function of the separation calculated for f = 0.8, ῡ = 20000 cm−1 and n = 1.45.

strength. We show in fig. 9 the exciton splitting of the stationary Φ− and the Φ+ states
caused by the J-coupling as a function of the separation.

The shortest high packing distance which can be realized for R = CH3 is in the order
of 1.5 nm at which the level splitting of two interacting molecules is about 400 cm−1.
It is about 100 cm−1 at 2.2 nm. Pc21 has an oscillator strength of about 1.4 which causes
stronger J-coupling. Its ETDM is polarized along the channel axis. The absorption and
the fluorescence spectra of Pc21 shown in fig. 10 illustrate nicely the consequences of the
J-coupling [16]. The nicest demonstration of exciton coupling has been recently reported
for pyronine loaded zeolite L for which correlated fluorescence microscopy, fluorescence
lifetime and spectral imaging of single crystals were performed. At higher loading the
molecules hinder themselves when entering the channels in a process which can be de-
scribed as “traffic jam in nanochannels”. This causes J-coupling in the region of the
channel entrance [17].

Fig. 10. – Absorption, excitation and emission spectra of Pc21 scaled to 1 at the peak maxima.
Left: absorption spectrum of Pc21 in 10−6 M solution (1), excitation spectra of Pc21-zeolite L
at p = 0.068 (2, emission observed at 540 nm) and p = 0.18 (3, emission observed at 640 nm).
Right: emission spectra of Pc21-zeolite L at p = 0.045 (1), at p = 0.068 (2) and p = 0.18 (3) [16].
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Fig. 11. – Energy levels and bandwidth, calculated for J-coupling with βC = 100 cm−1. Left:
energy levels of an exciton extended over 100 chromophores. Right: bandwidth for a varying
number of interacting levels. The dash-dotted line corresponds to N = 2.

Interaction between two neighbours has been discussed, so far. The experimentally
observed phenomena in high packing situations are in general expected to be due to
interactions between more than two units. Generalization of the exciton splitting due to
interaction of N chromophores is straightforward. It leads to eq. (40), where α denotes
the energy in the absence of any interaction and j is equal to 1, 2, . . . , N .

(40) ε(j,N) = α + 2βC cos
(

j

N + 1
π

)
.

This means that N interacting chromophores generate N levels. This causes some broad-
ening of the spectra; especially of the absorption spectra. The maximum splitting ΔE(N)
caused is the difference between the level ε(1, N) and ε(N,N). We see from eq. (41) that
it converges rapidly to the value of 4|βC|:

(41) ΔE(N) = 2|βC|
(

cos
(

1
N + 1

π

)
− cos

(
N

N + 1
π

))
.

We illustrate the contents of eqs. (40) and (41) in fig. 11 for N = 100 and βC = 100 cm−1,
while the value of α has been chosen to be equal 0. The consequences of the possibility to
prepare densely loaded dye-nanochannel materials have only very scarcely been explored
so far [16,17].

3. – Energy transfer FRET

We consider the EnT transfer D∗(0′) + A(0) → D(0) + A∗(2′), which we can also
express as D∗(0′)A(0) → D(0)A∗(2′). The rate constant for EnT between two selected
levels which are in resonance is, according to eq. (17),

(42) kEnT(0′,0;0,2′) =
2π

h̄
βD∗A

2ρ(0′,0;0,2′),

where βD∗A is equal to βC. In order to find all transitions which take place between D∗

and A, D∗ . . . A → D . . . A∗, we must sum over all states which are in resonance. We are
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interested in condensed phase. Hence, rotational levels play no role. Denoting the states
of the donor as (d′, δ) and those of the acceptor as (α, a′) the transfer rate constant can
be expressed as follows:

(43) kEnT(d′,δ;α,a′) =
2π

h̄
βC

2ρ(d′,δ;α,a′).

Since energy transfer can be very fast, it is not sufficient to consider only the lowest
vibrational state of the donor. We must sum over all iso-energetic situations. This means
that we must sum over all donor and acceptor states which are in resonance.

(44) kEnT =
∑

kEnT(d′,δ;α,a′).

There is no need to assume that the donor is in a thermally relaxed excited state. Energy
transfer can often be so fast that there is no time left for establishing thermal equilibrium.
This means that kEnT can be time dependent. We do not want to take this explicitly
into account but it is good to keep it in mind. It would in fact lead to a correction in
the expression of the spectral overlap integral. Spectra in condensed phase are usually
broadened due to solute solvent interactions and lattice vibrations. Hence, the initial (i)
and the final (f) levels of D∗ . . . A and D . . . A∗ are broadened. We may therefore express
the density of states ρE within a continuous energy range. We introduce the normalized
functions SD(ED∗) and SA(EA). The first expresses the probability that an excited
molecule D∗ emits photons of energy ED∗ and the second represents the probability that
A absorbs photons of energy EA.

(45)
∫

Eγ

Sγ(Eγ)dEγ = 1.

SD(ED∗) and SA(EA) reflect the shape of the luminescence spectrum of D∗ and of the
absorption spectrum of A, respectively. The resonance condition, illustrated in fig. 12,
can be expressed as follows:

ED∗ = ED
0′0 + εD∗ − εD,(46)

EA = EA
0′0 + εA∗ − εA,(47)

Eres =
∫

ED∗δ(ED∗ − EA)dED∗ .(48)

The rate constant for the EnT D∗ + A → D + A∗ is given as integral over the resonant
energy range:

(49) kEnT =
2π

h̄

∫
ED∗

∫
EA

βC
2SD(ED∗)SA(EA)δ(ED∗ − EA)dED∗dEA.

Inserting βC we get

kEnT =
2π

h̄

(
κD∗A

4πε0n2RDA
3

)∫
ED∗

∫
EA

|μD∗D|2SD(ED∗)(50)

×|μAA∗ |2SA(EA)δ(ED∗ − EA)dED∗dEA.
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Fig. 12. – Energy levels of a donor D and an acceptor molecule A illustrating the conditions for
resonance energy transfer in a more general way than in fig. 4.

An interesting way to evaluate this integral is using the Einstein coefficients A and B.
The ETDM times the distribution functions can be substituted by the lifetime and the
shape of the luminescence spectrum of the donor D∗ and by the absorption spectrum of
the acceptor A. Instead of integrating over the energy, we integrate over the frequency ν.
Since E = hν, dE must be substituted by hdν. We also substitute the arguments ED∗

and EA by νD∗ and νA, respectively:

kEnT =
1
h̄2

(
κD∗A

4πε0n2RDA
3

)2 ∫
νD∗

∫
νA

|μD∗D|2SD(νD∗)(51)

×|μAA∗ |2SA(νA)δ(νD∗ − νA)dνD∗dνA.

The connection between the ETDM and the Einstein coefficient for induced absorption or
emission, BD∗D, and that for spontaneous emission, AD∗D, can be expressed as follows:

BD∗D =
2π

3h̄2

1
4πε0

1
n2

(μD∗D)2,(52)

AD∗D = 8π
hνD∗

3

c0
3

n3BD∗D,(53)

where c0 is the vacuum speed of light. These two relations are used, after some lengthy
reasoning which we skip, to turn the rather complicated expression for the energy transfer
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rate constant (51) into the practical form (54) which was derived by Th. Förster [4].

(54) kEnT = TF · c0
κD∗A

2

n4RDA
6

1
τ0,D∗

∫
ν

SD(ν)
εA(ν)

ν4
dν.

The value of the Theodor Förster constant TF is given by

(55) TF =
9000 ln(10)
128π5NL

or TF = 8.785 × 10−25 mol.

We often prefer to record spectra in wave numbers (cm−1), using the relation between
frequency and wave number:

(56) ν = ν̄c0.

The dimension of S(ν) is equal to that of ν. Hence, expressing the spectral overlap
integral in wave numbers and using τD∗ = φD∗τ0,D∗ , where φD∗ is the luminescence
quantum yield of D∗ in the absence of energy transfer, we get

(57) kEnT = TF
κD∗A

2

n4RDA
6

φD∗

τD∗

∫
ν̄

SD(ν̄)
εA(ν̄)

ν̄4
dν̄.

This equation leads to the definition of the spectral overlap integral which is usually
abbreviated with the symbol J :

(58) Jν̄D∗A =
∫

ν̄

SD(ν̄)
εA(ν̄)

ν̄4
dν̄.

The dimension of J in formula (58) is [cm3 M−1]. The molar extinction coefficient εA(ν̄)
is usually expressed in M−1 cm−1 where [M] = [mol L−1]. The other dimensions are:
[τD∗ ] = [ns], [RDA] = [Å], and [NL] = [mol−1]. With this, the dimension of the energy
transfer rate constant is [ns−1]. This is convenient for a majority of applications.

(59) [kEnT] =
1

mol−1

1

Å
6

1
ns

cm3

mol · L−1
1051 = ns−1.

Using instead of this [J ] = [cm6 mol−1] the rate constant kEnT is

(60) kEnT = TF ∗10−3 κD∗A
2

n4RDA
6

φD∗

τD∗
Jν̄D∗A.

In the next sections we address some consequences of the important equation (57) for
the rate constant of electronic excitation energy transfer.

The efficiency of FRET depends on the inverse sixth power of the intermolecular
separation making it useful over distances in the range of 1.5 nm to 10 nm. Thus, FRET
is an important technique for investigating a variety of phenomena that produce changes
in molecular proximity. A condition for FRET is that the absorption spectrum of the
acceptor overlaps with the fluorescence spectrum of the donor. We illustrate this spectral
overlap in fig. 13 for the molecules Py and Ox.

Calzaferri
Bleistift

Calzaferri
Bleistift

Calzaferri
Bleistift
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Fig. 13. – Absorption and fluorescence spectra of two fluorescent dyes, Py and Ox, scaled to
the same height at the maximum. The picture shows three spectral overlap regions: that of
the absorption and fluorescence of the individual dyes (JPy/Py and JOx/Ox) and that of the
fluorescence spectrum of Py with the absorption spectrum of Ox (JPy/Ox).

3.1. Förster energy transfer radius. – A special situation occurs at a donor to acceptor
distance at which the EnT rate is equal to the luminescence decay. To analyze this
situation for an isotropic three-dimensional system, we write the rate of luminescence of
an excited molecule and the EnT rate to an acceptor (eqs. (61) and (62)):

Luminescence rate of D∗:
(

dρD∗

dt

)
fluorescence of D∗

= − 1
τD∗

ρD∗ ,(61)

Energy transfer rate:
(

dρD∗

dt

)
EnT

= −kEnTρD∗ .(62)

The rate at which D∗ emits light is equal to the rate at which it transfers its excitation
energy to A at a specific D∗. . . . A distance:

(63)
1

τD∗
= kEnT.

We name the donor to acceptor distance at which (63) holds, critical distance or Förster
radius R0. Inserting (63) in (57) and solving for R0 results in

(64) R0
6 = TF

κD∗A
2

n4
φD∗Jν̄D∗A.

From this we find the Förster radius R0 for electronic excitation energy transfer.

(65) R0 = 6

√
TF

κD∗A
2

n4
φD∗Jν̄D∗A.

R0 is equal to the donor-acceptor distance at which the probability for energy transfer
is 50%. Substituting (65) in (57) the very useful formula (66) is obtained. It allows
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determining the energy-transfer-constant as a function of distance, provided that we
know the spectral overlap and the natural luminescence decay time of the donor.

(66) kEnT =
1

τD∗

(
R0

R

)6

.

3.2. Probability for energy transfer . – We now consider the distance dependence of
the probability P for energy transfer. For this we write

(67) P =

(
dρ
dt

)
EnT(

dρ
dt

)
fluorescence

+
(

dρ
dt

)
EnT

.

Canceling (dρ
dt )EnT and using (61) and (62) gives

(68) P =
1

1
τD∗kEnT

+ 1
.

Inserting into (66), the probability for EnT can be expressed as follows:

(69) P =
1

1 + (R/R0)6
.

This equation illustrates a way to measure distances in macromolecules or biological
systems, by simply considering the energy transfer efficiency between a donor and an ac-
ceptor attached to the object of investigation. It is only valid if the involved chromophores
are embedded in a three-dimensional isotropic medium [24]. For other conditions it can
be expressed as follows:

(70) P =
1

1 + (R/R0)α
,

where the exponent α reflects the dimensionality of the system. It is equal to six for
three-dimensional systems, equal to four for two-dimensional systems and becomes equal
to two in the one-dimensional case. We observed in dye loaded zeolite materials α values
of 2 which means quasi–one-dimensional behaviour [16].

3.3. Selection rules. – There are no strict selection rules for Förster energy transfer.
We can, nevertheless, get a good idea by considering the following proportionality:

(57a) kEnT ∝ φD∗

τD∗

∫
ν̄

SD(ν̄)
εA(ν̄)

ν̄4
dν̄.

This means that the energy transfer rate constant depends on the extinction coefficient
of the acceptor. If a forbidden transition of the acceptor is involved, the energy transfer
rate is small. If the natural lifetime of the donor is large, the rate constant is scaled,
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Table II. – Spectral overlap, Förster radius for two values of κD∗A
2 and EnT rate constant for

molecules in zeolite L at room temperature.

Dyes Spectral κD∗A
2 R0 (Å) Fluorescence kEnT (ps−1)

Donor/acceptor overlap lifetime (ns)

(J/cm3 M−1) R = R0 R = 1.5 nm

Ox/Ox 4.4 × 10−13 2/3 64 3.2 3.1 × 10−4 1.9

4 86 11

Py/Py 1.1 × 10−13 2/3 51 3 3.3 × 10−4 0.5

68 2.9

Py/Ox 2.3 × 10−13 4 57 3 3.3 × 10−4 1.0

77 6.0

Ox1/Ox1 4.9 × 10−13 2/3 73 3.2 3.1 × 10−4 4.1

4 98 24

correspondingly. Hence, the following reactions are examples of allowed Förster energy
transfer processes [24]:

(71)

1D∗ + 1A → 1D + 1A∗,
1D∗ + 3A∗ → 1D + 3A∗ ∗,
3D∗ + 1A → 1D + 1A∗,
3D∗ + 3A∗ → 1D + 3A∗ ∗.

We note that the rate constant decreases with increasing luminescence lifetime of the
donor. The process can nevertheless be very efficient because the system gains time for
this process to occur but has also much time for other relaxation processes. Energy
transfer from a ruthenium stopcock to an organic dye inside the channels of zeolite L is
a nice example for a 3D∗ + 1A → 1D + 1A∗ energy transfer [25].

3.4. Examples for spectral overlap and Förster radius. – The spectral overlap between
the emission of an electronically excited D∗ and a molecule A is defined in eq. (58).
Knowing the spectral overlap integral, we can calculate the Förster radius R0 according
to (65). Knowing the Förster radius and the natural fluorescence lifetime of the donor
we can calculate the energy transfer rate constant according to (66). We report some
data in table II calculated for a refractive index of 1.33 for two different values of κD∗A

2

and two distances R for some selected molecules. From this we see that rate constants in
the order of 1012 s−1 have to be considered as being quite common and that in favorable
cases rate constants in the order of a few times 1013 s−1 should be possible.

The spectra and hence the spectral overlap J of the molecules depend often consider-
ably on the environment and on the temperature. We illustrate this in fig. 14 for Ox and
Py in zeolite L. In these two cases J changes only slightly despite of the increasing reso-
lution of the vibrational structure with decreasing temperature [26]. This can, however,
not be generalized and should always be checked for the specific conditions of interest.
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Fig. 14. – Fluorescence and excitation spectra of dye loaded zeolite L at different tempera-
tures. A) Py-zeolite L and B) Ox-zeolite L at 80 K (solid), 193 K (dotted) and 293 K (dashed).
The fluorescence spectra have been scaled to the same height as the corresponding excitation
spectra [26].

4. – Luminescence intensity dynamics

Consider a set of non-interacting molecules A. If one of them is excited to become A∗,
energy transfer to a neighbouring A can take place. This process is repeated until the
excitation energy is captured by a trap or lost, e.g., by luminescence or by radiationless
decay, as illustrated in fig. 15.

As a result electronic excitation energy is transported in space. An important quality
of this energy migration is that it cannot be observed by just measuring the lumines-
cence decay of A∗, as we shall discuss now. We assume that a molecule A is excited
electronically at time t = 0 by absorption of a photon. The probability that A is in the
excited state at time t is ρA(t). At t = 0 we have: ρA(0) = 1. The decay of the excitation
probability is

(72)
dρA

dt
= −1

τ
ρA,

where τ is the decay time (mean lifetime). Solving this equation gives

(73) ρA(t) = ρA(0)e−t/τ .

Fig. 15. – Migration of electronic excitation energy among similar molecules.
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τ0 is the natural lifetime and corresponds to the lifetime in the absence of other relaxation
processes. If all decay processes which result in deactivation of A∗ to the ground state
are of first order with the decay constants ki, we write

(74) τ =
1∑
i ki

and τ0 =
1
k0

.

The luminescence yield φL can be expressed as follows:

(75) φL =
1
τ0

∫ ∞

0

ρA(t)dt =
τ

τ0
.

We number alike molecules A with the indices k and j. If there is a possibility for a
radiationless transition A∗

k → Aj to occur, then the decrease of A∗
k is proportional to

the probability ρAk that Ak is in the excited state. There is an equal increase of the
excitation probability ρAj of the molecule Aj . Considering these processes between all
molecules:

(76)
dρAk

dt
=

∑
j

F kj(ρAj
− ρAk

) − 1
τ

ρAk
,

where F kj is the mean rate constant for the radiationless transfer A∗
k → Aj . Equa-

tion (76) can be written in this form, because the mean rate constants for a transfer
A∗

j → Ak has the same value, since we are studying alike molecules, which means:
F kj = F jk. This holds because emission and energy transfer take place in parallel
(at the same time). This formulation is different from the mechanism of self-absorption
and re-emission where the processes are consecutive. This means that the decay of
excitation probability 1

τ ρAk
(t) is accompanied by a balancing out of the excitation prob-

ability among the individual molecules. In order to describe not only one molecule A∗
k

interacting with molecules Aj but the behavior of an ensemble we must sum over all
cases:

(77)
∑

k

dρAk

dt
=

∑
k

⎛
⎝∑

j

F kj(ρAj
− ρAk

) − 1
τ

ρAk

⎞
⎠ .

In this equation the double sum cancels because F kj = F jk holds:

(78)
∑

k

⎛
⎝∑

j

F kj(ρAj
− ρAk

)

⎞
⎠ = 0.

From this, we find

(79)
∑

k

dρAk

dt
= −1

τ

∑
k

ρAk
.
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Inserting ρAk(t) from eq. (73) leads to the following expression for the luminescence
intensity which describes the situation after excitation of an ensemble of molecules:

(80)
∑

k

dρAk

dt
= −1

τ

∑
k

ρAk
(0)e−t/τ = −1

τ
e−t/τ

∑
k

ρAk
(0).

Solving this differential equation we find that the sum of the excitation probabilities for
the individual molecules is

(81)
∑

k

ρAk
(t) = e−t/τ

∑
k

ρAk
(0).

A more familiar way to write this equation is to express the excitation probability of A
in terms of concentrations denoted as [A∗]:

(82) [A∗](t) = [A∗]0e−t/τ .

This means that in a homogeneous system on average the decay of luminescence of the
ensemble is not affected by energy migration [4]. Hence, energy migration is not observed
in a simple luminescence decay measurement. How can migration of excitation energy be
observed? There are several possibilities. One of them is based on the fact that, under
many conditions, excitation energy migration causes a change of the polarization of the
emitted light. This can be observed in stationary and in time-resolved luminescence
experiments [27, 28]. Another possibility is to add luminescent traps at well-defined
positions in space [16] or to observe time and space resolved luminescence of an optically
anisotropic material [16,17,28,29].

4.1. 3D Systems of randomly mixed donor and acceptor molecules. – We assume that
ND donor molecules D and Nac acceptor molecules A are randomly distributed in a
large volume, so that effects due to the border of the rigid system can be neglected.
The molecules D and A are assumed to be at fixed positions. This means that they
cannot move. A is assumed to absorb light at lower energy than D, so that energy
transfer can occur from D∗ to A but not in the reverse direction. This situation is
schematically shown in the scheme of fig. 16.

We now discuss the decrease of the excitation probability of the donor. Any acceptor
molecule Ai, at distance Ri from D∗, gives an additional channel for relaxation, the rate
constant of which is kEnT(i):

(83) kEnT(i) =
1

τD∗

(
R0

Ri

)6

.

The same is true for energy transfer not only to Ai but to any of the Nac acceptor
molecules. From this we find that the decrease of excitation probability of D∗ can be
expressed as follows:

−dρD∗

dt
= (kF + kIC)ρD∗ +

(
Nac∑
i=1

kEnT(i)

)
ρD∗ ,(84)

(kF + kIC) =
1

τD∗
.(85)
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Fig. 16. – Randomly distributed donors D and acceptors A.

This means that we have Nac + 1 independent deactivation channels

(86) ρD∗ = exp

[
−

(
(kF + kIC) +

Nac∑
i=1

kEnT(i)

)
t

]

and that the excitation probability of D∗ decays exponentially. This can also be expressed
as follows:

(87) (kF + kIC) +
Nac∑
i=1

kEnT(i) =
1

τD∗
+

1
τD∗

Nac∑
i=1

(
R0

Ri

)6

.

We insert this in (86) and obtain

(88) ρD∗ = e
− t

τD∗

Nac∏
i=1

exp

[
−

(
R0

Ri

)6
t

τD∗

]
.

We do not consider the decay of a single molecule D∗ but that of a large number of statisti-
cally distributed molecules which have acceptors at statistically distributed distances Ri.
P (Ri)dRi is the probability that a given acceptor Ai is located in the environment of an
electronically excited D∗ at distance between Ri and Ri +dRi. Then the decrease of the
mean excitation energy 〈ρD∗(t)〉 is

(89) 〈ρD∗(t)〉 = e
− t

τD∗

Nac∏
i=1

∫ RV

0

exp

[
−

(
R0

Ri

)6
t

τD∗

]
P (Ri)dRi.

It is convenient to write this equation as the product of the exponential, describing the
fluorescence decay of the D∗ in the absence of acceptors multiplied by the modification
GD(t) of the decay caused by energy transfer.

〈ρD∗(t)〉 = e
− t

τD∗ GD(t),(90)

V =
4π

3
RV

3.(91)
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Evaluation of the distribution function GD(t) for uniform statistical distribution of D
and A in the three-dimensional space leads to

(92) GD(t) = e
−√

πNac(
R0
RV

)3
q

t
τD∗ .

The concentration of acceptor molecules in a spherical vessel of radius RV in [mol/L] is

(93) cac =
Nac

NL

(
4π

3
R3

V

)−1

.

Using the definition

(94) 2γ =
√

πNac

(
R0

RV

)3

or 2γ =
√

πcacNL
4π

3
R0

3,

we obtain

(95) GD(t) = e
−2γ( t

τD∗ )1/2

.

4.2. Lower-dimensionality systems. – Lower dimensionality is expected and has also
been observed in dye loaded zeolite L materials. Equation (95) can be extended, so that it
applies for any dimensionality between 3 and one by introducing a parameter δ; eq. (96).
δ is equal to 1/2 in 3D systems. It becomes smaller as the dimensionality decreases: 1/3
for 2D and 1/6 for 1D systems [30].

(96) GD(t) = e
−2γ( t

τD∗ )δ

.

We define the critical concentration c0 of acceptor molecules for a situation where γ
is equal to one. This means that the critical concentration of acceptor molecules is
represented by

(97) c0 =
α

NL

(
4π

3
R0

3

)−1

,

where α is a parameter that depends on the relative distribution of the ETDM. It is
equal to 2/

√
π for random arrangement but can also be smaller or larger, depending on

the situation. Hence, γ can be expressed as the ratio between the actual concentration
of acceptor molecules and the critical concentration c0:

(98) γ =
cac

c0
.

We wonder about the intensity of the emission of the donor at constant donor but varying
acceptor concentration, expressed by means of the parameter γ. This can be done by
investigating the fluorescence yield as a function of γ, for otherwise constant conditions.
The fluorescence yield φD∗ of the donor is proportional to the integral over the whole time
range from t = 0 to t = ∞, multiplied with the proportionality constant C. We compare
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Fig. 17. – Plot of the ratio of the fluorescence quantum yield ratio g(γ) vs. γ (left) and vs. 3
√

γ
(right). We see on the left that the fluorescence quantum yield of the donor (solid line) decreases
fast, while that of the acceptor (dashed line) increases accordingly.

in a 3D system φD∗ with the luminescence yield in the absence of acceptors φ0,D∗ .

φD∗ = c

∫ ∞

0

e
− t

τD∗ −2γ
q

t
τD∗ dt,(99)

φ0,D∗ = c

∫ ∞

0

e
− t

τD∗ dt = CτD∗ ,(100)

φD∗

φ0,D∗
(γ) =

1
τD∗

∫ ∞

0

e
− t

τD∗ −2γ
q

t
τD∗ dt.(101)

Evaluating and using the abbreviation

(102) g(γ) =
φD∗

φ0,D∗
(γ),

gives

(103) g(γ) = 1 − γ
√

π exp[γ2](1 − erf(γ)).

The behavior of this quantum yield ratio is illustrated in fig. 17 where we plot g(γ) vs.
γ and vs. 3

√
γ. We see that g(γ) is proportional to the donor acceptor distance R. It is

therefore not surprising that the plot shown on the right side of fig. 17 resembles the
behavior of the energy transfer probability P , eq. (70), vs. distance.

Numerical methods are needed to describe more complex situations. Markow
chain [9] and Monte Carlo methods [29] have been used by us to design and under-
stand supramolecularly organized systems. An example is shown in fig. 18 where we
present data of an antenna material.

Antenna systems are supramolecular arrangements in which electronic excitation of
molecules occurs in a given volume and in which the electronic excitation energy is
then transported by a radiationless process (near-field interactions) to a well-defined
location. Sequential insertion of dyes in channels has been shown to be an excellent tool
for preparing such systems [13, 16]. Figure 18A shows a schematic representation of an
individual crystal of an antenna material. The crystal is filled with donor molecules in
the middle, while the channel ends are occupied by acceptors. Energy is transported
in two directions towards the channel ends; we therefore call this material bidirectional
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Fig. 18. – (Colour on-line) Fluorescence behaviour of an Ox,Py-zeolite L antenna. (A) Scheme of
an antenna crystal and processes taking place upon excitation of a donor molecule: absorption
of incident light, energy migration from an excited donor molecule to a neighboring unexcited
one and trapping by an acceptor (black arrows), fluorescence of both donor and acceptor. (B)
Confocal microscopy images of an antenna crystal upon selective excitation of the donor and
observation through an appropriate filter. (C) Confocal microscopy images upon selective exci-
tation of the acceptor. (D) and (E) Time-resolved intensity dynamics of the donor (D) and the
acceptor (E) upon selective excitation of the donor. (D) Donor fluorescence dynamics in the
absence (dotted) and in the presence (solid) of acceptors. The faster decay in the presence of
acceptors indicates energy transfer taking place; (E) acceptor intensity dynamics. The rise of
intensity reflects the “pumping” of acceptors through energy transfer [29].

antenna. If one of the green dyes is electronically excited, the excitation energy can
travel randomly, until it is lost by spontaneous emission or captured by one of the red
acceptors and then released by them as fluorescence. The confocal microscopy images of
this material show nicely that the dyes are really situated as proposed by the schematic
representation. We observe the green donor fluorescence in the middle part of the crystal
upon selective excitation of the donor and applying an optical filter. Selectively exciting
acceptors results in their red fluorescence at both crystal ends; fig. 18 B,C.
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Fig. 19. – (Colour on-line) Representation of materials that have been successfully prepared
fulfilling the criteria of different stages of supramolecular organisation. The length of the
cylindrically shaped crystals is in the order of 50 nm up to a few hundred nm. A) Antenna
materials are obtained by the consecutive insertion of different dye molecules. Bidirectional
stopcock-plugged antenna materials are obtained by modifying the channel entrances with spe-
cific stopcock molecules [32]. B) Oriented monolayers of standing zeolite L crystals on a substrate
(top) [33]. C and D) Interfacing antenna crystals to a reaction centre via stopcock molecules.
Bidirectional (C) and monodirectional (D) electronic excitation energy transport materials con-
nected to a photoelectronic or photochemical reaction centre. The excitation energy from the
dyes in the channels (green rectangles) is transported via FRET to the stopcock molecules (red)
located at the entrances. From there, the electronic excitation energy is transferred radiation-
lessly by near-field interaction (FRET) to a reaction centre.

Time-resolved investigations upon selective excitation of the donors show the behav-
ior one would expect for Förster energy transfer. The donor intensity dynamics is shown
in fig. 18D. The intensity decay in the presence of acceptors is faster (solid line) than the
decay in the absence of acceptors (dotted line), as the energy transfer is an additional pro-
cess depopulating the excited state of the donor. The intensity dynamics of the acceptors
is shown in fig. 18E. It rises first before it starts to decay. The reason is that the accep-
tors are not excited directly but are “pumped” to the excited state via energy transfer.
The more efficient the energy transfer, the faster is the rise, which is often difficult to be
observed for molecules with a luminescence lifetime of only a few ns. This rise has been
very nicely observed in the antenna materials [29] and also in mixed dye materials [31].

5. – Conclusions

The essential theoretical reasoning that has been used for developing and under-
standing nanochannel based antenna materials for capturing and transporting electronic
excitation energy is based on ETDM interaction. The consequences are quasi-one-
dimensional electronic excitation energy transport and J-coupling phenomena. A fas-
cinating result of Försters theory [4,5] and of Davydov’s theory [14] is that both lead to
simple equations useful for understanding complex phenomena. While it is possible to
derive the Förster equations in a more general and theoretically more elegant way, we
find that the semi-intuitive approach used by Förster, which we have followed here, leads
to a good physical understanding of what is going on and hence helps to invent experi-
ments which bring the formulas to life. Excitation energy migration has been described
as hopping process. This is very useful and we intend to apply it also for the more com-
plex materials under study, illustrated in fig. 19C and D and explained in more detail
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in ref. [16]. The stopcock principle allows communication of dyes inside the channels
with external species like a molecule, a polymer matrix, a semiconductor, a quantum
sized particle, a molecular- or a nano-magnet, and a biochemical or a biological object.
Electronic excitation energy transfer in such materials can be extremely fast because of
their low dimensionality. We do not yet know much about the coherence length of the
J-coupling but we would not be astonished if considerable coherent length could be real-
ized. We wonder to what extent a hopping mechanism remains an adequate description of
the process in such systems as the coupling strength can be larger than 100 cm−1. Precise
time, space and spectrally resolved experiments on well-selected single crystals of about
1000 nm length will be needed in order to get the necessary experimental information.
The systems are so versatile that fascinating results are to be expected.
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[28] Pauchard M., Huber S., Méallet-Renault R., Maas H., Pansu R. and Calzaferri

G., Angew. Chem. Int. Ed., 40 (2001) 2839.
[29] Yatskou M. M., Meyer M., Huber S., Pfenniger M. and Calzaferri G.,

ChemPhysChem, 4 (2003) 567.
[30] a) Farinha J. P. S., Spiro J. G. and Winnik M. A., J. Phys. Chem. B, 105 (2001)

4879; b) Hauser M., Klein U. K. A. and Gösele U., Z. Phys. Chem., 101 (1976) 255.
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