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1. Preliminary Information

Goals

Why is graphite black and an electric conductor, while diamond is colorless and an insulator?

Why isthe silver sulphide molecule Ag,S colorless, while silver sulphide as a bulk material is ablack
semiconductor?

These and similar questions relate to extended structures and cannot be answered using methods of
elementary quantum chemistry. Instead, new terms and methods are needed. The explanation of
extended structures starting from molecules as building blocks has been well educated in earlier
publications. [1 - 4] However, al these approaches lack the visualization and interactivity needed to
concretize this abstract topic, a simple consequence of the limited possibilities of printed material.
Mathematical program packages such as Mathcad enable a variety of new possibilitiesto open this
important topic to a broader audience.

Our goal in this publication is to introduce the terms and methods needed to describe extended
structures and their propertiesin an interactive way and by extensive use of the visualization features
of Mathcad. We will not answer applied questions as the ones asked above but enable the user to
answer them himself using appropriate tools. He should eventually understand the concepts needed to
perform quantum chemical calculations on extended systems, be able to analyze and to grasp the
results of such calculations and be in the position to understand corresponding research literature.

The theory needed to describe extended systems and their properties includes the following terms
which will be introduced within this publication: Translational symmetry, reciprocal space, Brillouin
zones, Bloch functions, wave vectors, crystal orbitals (COs), energy bands, the Peierls distortion,
band structures, density of states (DOS) and crystal orbital overlap populations (COOP).

For users who do not only want to acquire the theoretical knowledge but want to perform
calculations themselves, we provide a complete freeware software package allowing to compute and
visualize band structures and DOS diagrams, including many worked examples. [5]

The user can achieve the goals of this course

- by poring over the short textual explanations of the new terms, when they are introduced,

- by studying the extensive visualizations, the idea of which isto concretize the abstract theoretical
approach and to provide a visual road to comprehension,

- by deepening their comprehension by modifying the values of variables and parameters and by
precisely analyzing the changes resulting in the graphical representations, as suggested in the
problems,

- by relentlessly solving ALL problems provided. Thisis indispensable since amajor part of the
theory isnot explained in textual form but will become comprehensible within the problem-solving
process,

- by spending the many hours needed to work through this densely written course.
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Performance Objectives

At the end of this course the user should be able to:

explain how the energy eigenvalues and the coefficients of = molecular orbitals (MOs) of finite linear
chains and rings are calculated.

sketch the 1 MOs of finite linear chains and rings for different energy levels.

explain why an extension of the basis to three functions is useful, explain the difference between the
eigenvalue formulae for the different basis orbitals, and reason why the same MO coefficients are used
for al three basis functions.

explain the transition from finite to infinite rings, starting with the Bloch theorem and ending up with
crystal orbitals. He should be able to emphasize the differences of MOs and COs, energy states index
and wave vectors.

precisely explain the meaning of the terms Bloch function, wave vector, crystal orbital, energy band
and band structure.

explain the characteristics of reciproca space and know what the first Brillouin zone is and what its
significance is within the theory of band structures.

explain when and why back-folding of energy bands occurs and in what situation the bands split at the
X point.

sketch al sorts of energy band diagrams met in this course, be it split or not split back-folded or not
back-folded bands, and interpret the symmetry and shape of these bands.

explain the meaning of the DOS and argue why this measure is a valuable tool in the discussion of
extended systems. He should know the definition of the DOS and should be able to sketch atypical
DOSfigure and correlate it with the corresponding energy band.

describe the meaning of COOPs, compare them with Mulliken overlap populations in molecules,
explain their definition, and sketch typical population curves on the basis of agiven set of COs at
different k points.

explain the expansion of the band structure theory to two dimensions. He should also be able to make
the logical step to three dimensions and be aware of the resulting changes and consequences.

sketch band structure diagrams for the two-dimensional carbon lattice for all basis orbitals and explain
the run of these curves.

start working with the tight binding program package BICON-CEDIT. [5]
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Prerequisites

This Mathcad course cannot replace a textbook or alecture on the abstract topic of band structures.
Rather, it isour ideathat this course should be used as an independent study project for students at the
undergraduate level that is accompanied by reading a textbook such as Solids and Surfaces by R.
Hoffmann [1] and by assistance, e.g. by a graduate student.

The following prerequisites are indispensable in order to succeed in this course:

e Knowledge and mastery of the fundamentals of quantum chemistry. An introductory lecture on
guantum chemistry should have been attended.

e Moderate skills with Mathcad.

e Comprehension of the following introductory texts:

Information about Bravais lattices

Information about reciprocal lattices

Definition of globally used variables

One should be aware of the need to clearly define all variables. To provide an overview the most
important variables are given in the following table:

Variables the values of which can be changed.

N :=20 Number of atoms
a:=0 Coulomb integral for chapter 2 B:=-1 Resonance integral for chapter 2
g = —2 ] Coulomb integrals Bss =-05
— for chapters 3 and 4 — Resonance integrals
“p- 1 BPG =05 for chapters3 and 4
Bpn =-05
Hyperlinks back to: 2.1 (Linear chains)
2.2 (Rings)
3.1 (Linear chains - Three basis functions)
3.2 (Rings - Three basis functions)
4. (Infinite rings - Three basis functions)

Index variables. They should not be changed.

J=1.N j=0.N-1 Index of the energy levels of the chain (J) and thering (j), respectively
L:=1.N A:=0.N-1 Indices of the atoms (atomic orbitals) of the chain (L, M)

M:=1.N p:=0.N-1 and of thering (A, L), respectively.
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2. Finite, one-dimensional systems - One basis function

For a better understanding all examples are made with the zero differential overlap (ZDO)
approximation.
Information about the ZDO approximation

The formulae are kept ssmple and the numerical effort small. Furthermore, the model compounds
selected have been chosen in order to keep things as simple as possible.

Since most chemists are more familiar with the discrete energies of molecular orbitals than with band
structures of crystal orbitals - although the two approaches are essentially similar - we start with
molecules and will later extend them to one-dimensional crystal structures.

In the first step we consider T molecular orbitals of linear and cyclic unsaturated hydrocarbon chains,
built up of N carbon atoms. Each of these carbon atoms can form n bonds with its p, orbital. These
bonds are modeled as alinear combination of the atomic orbitals to form molecular orbitals. The
MOs have discrete energy values which we can calculate. Additionally, we can describe the
contributions of the atomic orbitals to the MOs by coefficients.

2.1 Linear chains

The following figure represents alinear chain of N carbon atoms:

1 2 3 4 5 N—-1N Current values of variables:
N=20 a=0p=-1
o000 ()  Changevalues

Considering only the p, atomic orbitals (AOs) as abasis, we form MOs by linearly combining them
(LCAO-MO method). We find:

J-n\
N+1)

Energy eigenvalues.  ¢(J) := o + Z-B-cos(

> L \ Explanation of the form
- . . : of the molecular orbitals
MO coefficients: c(L,J := / N 1-sm(\]-n- N+ 1) and derivation of the

enerqy eigenvalues
]
Molecular orbitals:  y (J) := z c(L,d)-p, (L)
L

p,(L) isthe p, AO on carbon atom no. L.
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The energy eigenvalues and the coefficients of the wavefunctions are visualized in the next two figures:

Energy eigenvalues Coefficients of the wavefunctions
T T T 0.5 T T T
c(L,1)
Faxamal
i@- - c(L.2) or -
+—+—+
05 | | |
20 ' 5 10 15 20
J L

Change variables

Visualization of the energy levels and of the nodes in the various MOs for N = 2 (ethene), N = 4
(butadiene) and N = 6 (hexatriene). The size of the AOsis uniform; they are not scaled to represent the
magnitude of the MO coefficients!
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Problems

2.1 Set N =4. Then compare the graph of the energy eigenvalues to the energy levels of butadiene in
the figure above.
Compare the coefficients of all four MOs with the sign scheme in the energy level figure.
(The coefficients of y(3) and y(4) can be plotted by replacing c(L, 1) and c(L, 2) in the above
plot with ¢(L, 3) and c(L, 4).)
Sketch the four MOs of butadiene using not only the signs of the MO coefficients but also their
magnitude.

Repeat the whol edure for N = 6.
ep e whole procedure for Home
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2.2 Verify exemplarily that for any value of N the number of nodes grows from zero in the lowest MO
to N-1in the highest MO.
That this must be true can also be shown mathematically. Y ou can do this.
2.3 Sketch the energy eigenvalues as an energy level chart. What happensif N approaches infinity?
2.4 Inthe ground state, which energy eigenvalue corresponds to the highest occupied MO? Each
carbon atom contributes one ©t electron. Assume that the MOs are filled with electrons from
bottom to top according to the aufbau principle. Each MO can hold up to two electrons.
What is the energetic consequence of this aufbau principle for the stability of the molecule?
2.5 Show numerically using Mathcad that the MOs are normalized correctly.
Hint
2.6 Study the following tutorial showing the way to find the numerical values of the energy eigenvalues
and of the MO coefficients.
The Hickel eigenvalue problem

2.2 Rings

A finite chain has a beginning and an end. Effects which derive from the border are therefore expected.
Such border effects are certainly more decisive in short chains. To avoid them the so-called Born-von
Karman boundary condition isimplemented by introducing cyclic structures. The Born-von Karman
boundary condition demands the wave function on atom N to be identical to the wave function on atom O:

1 0 N4
2 OO0 N2

5 M Q

\ Current values of variables:
Q b N=20 a=0p=-1
A ,EJLJ Change values
(

Since the equivalence of al atomsin rings is advantageous for our purposes, infinitely large rings provide a
more elegant approach to describe infinitely long chains. (Note that the curvature of an infinitely large
circleiszero, just asit isfor astraight line.) We start with the description of finite rings. Thiswill lead usto
infinite rings in section 4.
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The following energy eigenvalues and MO coefficients are found:

Energy eigenvalues.  ¢(j) := o + 2-[3-005(

MO coefficients: c(n.j) = \/jlilexp(

2-71\

N )

2 )

N

e(11) 5= 5(elk.]) + ccory (1)

Molecular orbitals:  y4(j) = Z cqy( ,j)-pﬂ(k)l
A

Energy eigenvalues

I
l —
e(])
_e_ —
_l —
-2 l
0 6.33
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Explanation of the form of the
molecular orbitals and derivation

of the enerqgy eigenvalues

i) = =(ol.]) - ccony (1)

woli) = 3 el i)y (3)°
A

Coefficients of the wave function
I I
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| |
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Note that if N iseven there will be an even number of MOs and the left situation in the following energy
level chart will result, while for an odd N the right situation will result:

A

Energy

aeven odd

Visualization of the energy levelsfor N = 6 and top view of the MOs:
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Problem

2.7 Set N =6. Verify the distribution of energy levels and their degeneracies as predicted in the figures
above. Plot the coefficients of all six wavefunctions (MOs) by modification of the plot " Coefficients
of the wave function", and compare them with the MO scheme in the figure above.

Repeat the whole procedure for other values of N, especially for N = 3, 4, and 5.
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It turns out that some rings are stable, others are stabilized by distortion. The Hiickel rule states that all
rings with 4n + 2 &t electrons are stable. Thisis a simple consequence of the degeneracy of all but the
lowest (and possibly the highest) energy levels, leading to a closed shell system if 4n + 2 & electrons are
present. All other rings lead to open shell configurations which are stabilized by distortion. Thisis known
asthe Jahn-Teller effect, which will be discussed in section 5.2.

Since in a neutral ring the number of ©t electronsis equal to the number of carbon atoms, it follows that
neutral (4n + 2)-membered rings are stable. Rings of different size can be stableif they have an excess or
adeficiency of  electrons, resulting in atotal of 4n + 2 & electrons. Examples are the cyclopropeny!
cation and the cyclopentadienyl anion:

v O ()

-2

ofp 4 — — _

o+

AT H
i H H H

Derivation of the number of stabilized MOs in rings with 4n + 2 & electrons

Problems

2.8 What are the possible values of j for even and for odd values of N?
Show algebraically that the lowest energy level is always non-degenerate.
Show algebraically that thisis also true for the highest energy level if and only if N iseven.
2.9 Sketch the energy eigenvalues for various values of N as energy level charts, asit was donein the
figure abovefor N = 3, 5, and 6, and fill in the electrons for neutral molecules according to the
aufbau principle. (Use at least the following valuesfor N: 3, 4, 5, 7, 8, 10)
2.10 Explain why cyclobutadiene is distorted. (Use the results of problem 2.9 to argue.)
2.11 Observe the behavior of the HOMO and the LUMO (highest occupied and lowest unoccupied
molecular orbital) levelsin the charts of problem 2.9, as N approaches infinity. What happens?
2.12 Show numerically using Mathcad that the MOs are normalized correctly.
Hint
2.13 Compare the MOs of chains and rings. How does the number of nodes develop?
Do the edge phenomena weaken in the MOs of chains when N increases?

Home
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3. Finite, one-dimensional systems - Three basis functions

In order to make the model more general, all valence electrons of the carbon atomsin the chain or ring
have to be accounted for. Hence we will include all valence orbitalsin our calculations. For carbon we
expect abasis set of four functions (2s, 2pyx, 2py, 2p;). However, in the linear chain case, as treated
here, the py and p, orbitals are indistinguishable. They both form = bonds. As a consequence, they are
summarized as p, AOs. In constrast to these p,; orbitals the 2px AOs form ¢ bonds. They are denoted as
ps AOs. Finaly, the s orbitals are called s; AOs, since they of course lead to ¢ bonds:

. s
' o8
Basis VAN X Pr
( )
_|.i_:: X Po
.-"'.Jf_-\-h\-.
_|' \ 5
1 x (4]
S

We again examine the energy levels and MOs of linear and cyclic finite chains of equidistant carbon
atoms in the ZDO approximation. This means that we assume that

e an AO overlaps only with itself,

e only next neighbors do interact,

¢ the Coulomb and resonance integrals have constant values for each type of basis function.
Furthermore, 2px AOs will interact with 2px AOs only, 2py AOs with 2py AOsonly etc.. Thisisa
consequence of the symmetry and the orthogonality of al AO types.

Hence we can independently describe the interactions between AOs of the same type. The only
difference we make between the different basis functions (p,, ps, Ss) IS the choice of the values of their
Coulomb and resonance integrals.

Hence nothing will change in the derivations of the energy eigenvalues and of the MO coefficients.
Apart from a sign change in the energy eigenvalues of the MOs formed from p; AOs (see comment
below) the results remain the same.

Keep in mind that what we describe here are not molecules. There are only carbon atoms and, for
example, no hydrogen atoms. Our goal isto develop atheory allowing to describe extended systems,
e.g. athree-dimensional crystal of carbon atoms. In thisfirst part we develop the theory for the
one-dimensional case by investigating alinear chain and aring of carbon atoms, respectively. The
generalization to two dimensions will follow in section 10, showing the steps needed to describe
systems in higher dimensions.

Sincein acrystal all valence orbitals of all atoms will interact with neighboring AQs, all kinds of
Interactions occurring have to be considered in order to yield a comprehensive description of the
system. Therefore we have subdivided the AOs into classes, according to the type of their interaction,
and will now describe the resulting energy levels and MOs.

Home
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3.1 Linear chains- Threebasisfunctions

The following figure shows alinear chain of N carbon atoms, seen perpendicular to the xy-plane. The

sketched orbitals represent, from top to bottom, the 2s, the 2py, the 2py, and the 2p; AOs, dl in the most
bonding configuration.

2 3 N-1 N
/f ,-f"F_H\‘ A
Q U/ ) B =%

8 -
9 S
)
%
-
®

O O) O O
/ N \
|>(E'| {(\_?‘. ."Ij{". |.X-, l"'. 2p¥
S K_,JI I-\._f'l \_,e'l I'\_ J 2 p"T
oO—0O0——=0 O—O 2p,

We now use the arbitrary values for the Coulomb and resonance integrals of the various basis functions
which have been defined at the end of chapter 1:

ag=-2 op = -1 Bgs =05 ch; =-05 Bpn =-05 Change values

. Jn \ Current value of N: N = 20
Energy eigenvalues: = + 2 -Cos| ———
9y €9 epn) = ap+ 2Ppr (N+1} Change value
Jn \
SpG(J) = Otp— ZBpGCO{mj Comment
m )

€ = Og+ 2B g COS| ——
o)) = a5+ 2P N+1)

MO coefficients: c(L,J =

( N+1j

Wave function: J = c(L,J)- (L)l (MO belonging to the eigenvalue J)
v ¢
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Energy levels
|

0 T T
epr(J)
BN _
g’p(y(‘])

_ | |
3 5 10 15 20
J
04 Coefficients of the wave functions
: I I I
a/e/a——-e—e*s
c(L,1) 0.2 » ' Te_ .
W : )
N [ 5
c| L,floor| — ; NS
ne(3)) o .-
+——
c(L,N) [
0.2 /
04 | | |
' 5 10 15 20
L
Change variables
Problems

3.1 Change the chain length, and discuss the resulting changes in the plots above.

3.2 Change the values of the Coulomb and resonance integrals a.s, oip and Bss, Bps, Bpr
respectively, and discuss the resulting changes in the above plots.
Keep in mind that all these energies are negative and that the 3 values are smaller than the
corresponding o values according to amount. (Information about the ZDO approximation)
Do not choose unrealistically large values for o and 3, and do not forget to reset the variables
to their original values after this exercise (o = -2, oy = -1, al f =-0.5).

3.3 Sketch the MOsfor the three basis functions and for J= 1, J = floor(N/2) and J= N each.
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3.2 Rings - Threebasisfunctions

The following figure shows aring of N carbon atoms, seen perpendicular to the xy-plane. The sketched
orbitals represent the 2s (top left), the 2py (top right), the 2py (bottom left), and the 2p, (bottom right)
AQs, al in the most bonding configuration. (A separate coordinate system is placed on each carbon atom
with the x-axis lying tangentially to thering.)

A 0 A A 0wy
L ) Y e o .
e I\J} — T:u)\("“‘}\e k ﬁ)c?w - f}r\:ﬁf\ ?
. - iy, T
™ ! s} .
p
® J
) f@ N7 \ °oMy
) Ay -
%Qk”f}f_\xﬂ () {’L.“/ e v . ,x’Q O O
/__/ |\:} -\./:/ / nj , /l"w.._-_{ @ N

The derivation of energy eigenvalues and MO coefficients for rings was not dependent on the type of
atomic orbitals used. Hence the results can be used as they have been derived. However, just as with
linear cheains, three separate formulae are needed in order to correctly describe the energy eigenvalues,
since the energy eigenvalues depend on o and 3 and on the symmetry properties of the atomic orbitals.
This can easily be understood from consideration of the above figure.

N =20 ag= -2 op = -1 Bsy =05 ch; =-05 Bpn = -0.5 Changevalues
Energy eigenvalues: ¢, (j) := ap+ 2:B . -COS —— J-2n
* Eprll) = Gp+ < Ppr N

o j-2n
SpG(j) =0p— 2 chs cos( N

eg5(l) = ag+2:BgsCO N }

N 21\ J\ 1 2. )
MO coefficients: \/% ( CCOHJ %) \/; exp( )

1 1 .
l(kaj) = E ( (7\’9J) +CC0nj(7L J)) 9J = z (C( Cconj 7‘9]))
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Wavefunctions:  y4(j) = Z cqy(n ,j)-d)(?»)l yo(j) = Z co(n.j)-0(2)
A A

(MOs belonging to the eigenvalue j)

0 Energy levels
I
gpﬂ;( )]
4L _
Spo-(j)
+——
£s(i) \\\
-2
3 |
0 5 10
j
Coefficients of the wave functions
I I
cy(n,2)
_e_
+——
-047 - _
| |
0 6.33 12.67 19

Change variables

Problems

3.4 Change the ring size and discuss the resulting changes in the above plots.

3.5 Change the values of the Coulomb and resonance integrals a.s, oip and Bss, Bps, Ppr, respectively, and
discuss the resulting changes in the above plots. (See problem 3.2 for further instructions.)

3.6 Sketch the MOsfor the three basis functions and for j = 0, j = floor(N/4) and j = floor(N/2) each.

3.7 Compare the energy level curves of chains and of rings.
What does this comparison show with respect to the goals of this course?

Summary of sections 1to 3

Home
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4. Infiniterings - Three basis functions

We have |learned that elongated chains can be approximated by rings with a very large radius. When the
number of atoms N of the ring approaches infinity, the curvature of the ring approaches zero, i.e. thering
becomes physically indistinguishable from an infinite linear chain. Approximating a chain with aring has
the advantage of removing any edge phenomena since edge phenomena do not exist in an infinite linear
chain. However, they will not vanish aslong as a chain approach is used to describe the infinite chain.
Sinceit isthe goal of this course to describe extended systems, i.e. systems consisting of an infinite
number of atoms which are, in the one-dimensional case, aligned on a straight line, it is favorable to use
the ring approach and let the ring size approach infinity.

Although with the derivation of the theory on ringsin sections 2 and 3 we have aready beared the brunt

of work, we cannot just replace N in the above energy functions and MO coefficient formulae with infinity
now in order to describe extended systems.

The problem we should overcome first is that the formulae cannot be evaluated if N isinfinity! However,
theuse of TRANSLATIONAL SYMMETRY can avoid thistrouble. Thisis the starting point for the
BLOCH or SYMMETRY ORBITALS.

The Bloch theorem saysthat if x is an arbitrary ring position in an infinitely large ring and a is the spacing
between two nearest ring positions or, more general, the length of a Wigner-Seitz cell, then the wave
function at position x + ais the wave function at position x times e24/N, where j is an integer in the range
0,12 ..,N-1

4
I
\ a=1
The following wave functions, the BLOCH FUNCTIONS, solve this equation:
i 21 j-X "
. N-a
v(x,j)=e 0 (x)
Home
M. Meyer, S. Glaus and G. Calzaferri QBAND.mcd Created: December 2002

J. Chem. Educ., 2003, 80, 1221 Page 16/44 Modified: June 2003



Mathematically ¢(x) isaperiodic function that isidentical at each ring position, i.e. ¢(X) = ¢(x + 1a)
for any integer A. Physically ¢(x) describes the atomic orbitals. Bloch functions can be expressed
more adequatly if we use the integer variable A asan atom index to describe the position on the ring,
with A running from O to N—1 corresponding to the ring positions 0, a, 2a, ..., A-a, ..., (N-1)-&

i'ZTc-j-?»
, N
y(r.j)=e 4(2.)
Summing over al A results in the wave function of the MO:
i.2-n~j-7»

vi)=e N
A

Apart from the normalization factor, this wave function isidentical to the MOs for rings that have been
introduced in sections 2.2 and 3.2. This shows that we have already introduced Bloch functions when
we have introduced complex MO coefficients in the mentioned sections.

We will now eliminate N and j in the exponent of the Bloch functions. Otherwise there is still no way to
evaluate the coefficients for infinite systems.

The elimination of N and j is done by introducing the so-called WAVE VECTOR or k-VECTOR:

_ 2. ! kiscaled awave vector. It has an inverse length as dimension. This
Wedefine: Kk(j) ;== —-j  step therefore marks the transition from direct space to reciprocal space!
N-a Information about reciprocal lattices
k can be interpreted as a symmetry label. Thisview will be crucial in the

following discussions.

Because j can have floor(N/2) + 1 values (Explanation), there are also floor(N/2) + 1 k-vectors,
ranging from O (j = 0) to approximately n/a (j = floor(N/2)).
If N approaches infinity, the set of k-vectors becomes the continuousinterval [ O, n/a].

] represents the energy levels. Obvioudly, thisroleis overtaken by k now. Therefore each k-vector
represents one MO, which we now call a crystal orbital (CO) because by using Bloch functions
our focusis on the whole system (i.e. on the whole crystal for N approaching infinity).

The crystal orbitals, usi ng Bloch functions and normalization, now have the following fina form

[ |
\pB(k)—\/7 Z exp(i-k-an) ¢y, VBconj (k) = /7 Z exp(—i-k-anr)-¢y

These COs are swtabl eto deSCI‘I be infinite systems.
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In the one-dimensional casethe FIRST BRILLOUIN ZONE is defined as the set of pointsin

reciprocal space with k-valuesin the interval I <k < Z Itistherefore obvious that the
a a

above set of k-vectors with valueslyingintheinterval 0 < k < z corresponds to half the first
a

Brillouin zone.

2
Using k-vectors outside the first Brillouin zone results in redundancy. The period is il
a

Thisis easily proven. For an integer m we find:

veirmZ )= [L37e T () 40)
WB(kerzn\ lekaklm2nk¢(k)

WB(k+m2ﬂ fzukax

WB(M m ;) gk

To conclude, the smallest complete set of k-vectors representing all COs corresponds to half the
first Brillouin zone.

Note that the theory developed here for the 1D case can be generalized in order to describe two- and
three-dimensional crystals. In the n-dimensional case the k-vectors have n components what makes
them 'real’ vectors.

In section 10 a two-dimensional carbon lattice will be investigated using Bloch functions and COs.

Home
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Bps =05  Bpp=-05 Changevalues
Energy eigenvalues: SBpn(k) =opt 2-Bpn-cos(k-a)
sBpG(k) =op - Z-ch-cos(k-a)

€Bgg(K) = ag+ 2-Bgs-cos(k-a)

CO coefficients: cB(x,k) = \/%-exp(i-k-ak) CBconj(kak) = \/i;exp(—hk-a-k)

(CO coefficients on atom A belonging to the wave-vector k)

1
CB1(7“=k) = 5'(08(7‘*) + CBc:onj(7"k)) (Real CO coefficients belonging
1 to the wave-vector k)

CBz(x R k) = z

-(CB(k,k) — CBconj(kak))

Wavefunctions:  ygq(K) := Z cBl(k,k)~¢kl vgo(K) = Z ch(k,k)~¢kl
A A

(COs belonging to the wave vector k)

0 Energy bands
T T

egpn(K)

eBpo(¥)

Bl A

0 1.05 2.09 3.14

The plot of the energy eigenvaluesvs. k is called an ENERGY BAND.

Note that in principle we should only talk about energy bands when the number of atoms and hence the
number of energy levelsisinfinite, i.e. when we describe extended systems. Nevertheless, we will go on
talking about energy bands although our values of N are perfectly finite since finite systems are just our
mnemonics for extended systems.
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CB 1(7\.
CBz(l

Problems

0.1 =)

a
,0.1-5\ 0
a

-0.47

Bloch CO coefficients

6.33

12.67

Change variables

4.1 What isthe difference between the energy bands displayed above and the energy vs. MO
index curves displayed in chapters 2 and 3?
4.2 Compare the Bloch CO coefficients for wave vectors corresponding to energy levels which

exist for the current value of N with the corresponding MO coefficients.
4.3 Provethat the Bloch functions indeed have the energy eigenvalues
eg(k) = a + 2B3-cos(k-a).

Hint

M. Meyer, S. Glaus and G. Calzaferri
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5. Infiniterings - One basisfunction -
Alternating / Non-alter nating bond lengths

It iswell-known that polyacetylene has alternating bond lengths. [6] Although it is an extended and nearly
linear system, this behavior cannot be described with the theory developed so far, since the latter

assumes all carbon atoms to be equivalent. However, the photochemical and photophysical properties of
organic dyes having arelatively elongated system of alternating double bonds, such as the carotenoids,
are greatly influenced by the localization or delocalization of the double bonds. It is therefore desirable to
expand our theory such that alternating bond lengths can be described.

In this section we will realize this expansion which will provide the meansto deal with structures like
polyacetylene in a simplified manner, and, at the same time, alow to introduce new terms and to deepen
the understanding of the theory derived in chapters 1 to 4.

Up to now, we've worked with one carbon atom per unit cell. This situation is shown top left in the
following figure. It implies that all carbon atoms are equivalent and, consequently, that all C-C bond
lengths are equal, i.e. that we have non-alternating bond lenghts. The part down left in the figure
visualizes the situation present in polyacetylene: The bond lengths alternate.

How can the second evolve from the first situation, thereby showing away how to expand our theory?
The second situation is generated if neighbouring atoms alternately get slightly closer and further apart,
thereby forming a chain of buckled dimers. We can mimic this behavior by doubling the unit cell from
one to two carbon atoms and by assigning different resonance integrals 3; and B for the two
carbon-carbon bonds in the new unit cell; see the part down right of the following figure:

N Y N

~OFOF-0=0=0=
a

" P
* L

Or

B. B
OFO0—0O00——0CF
C

1
2,41 C'1 CE C‘I.r+1 C?..I“H

r ir

In the non-alternating case, one unit cell consists of one center, thus contributing one p,; atomic orbital. In
the alternating case one unit cell consists of two centers, thus contributing two p,, atomic orbitals.

(In section 6 one enlarged unit cell will additionally contribute two p, and two s, atomic orbitals.)

Note that the model we use here does not directly describe polyacetylene, since it does not include
hydrogen atoms and bond angles. The only aspect it takes into consideration is bond alternancy!

A possibility to manage two centers per unit cell in the ZDO approximation is by separately writing down
the crystal orbitals W15 and Wog for the two center types, followed by forming linear combinations of
these two CO types:

Y =Cy1¥1g + Co'¥op
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5.1First case: 1 =B,

We redefine the values of the Coulomb and of the resonance integrals. These assignments will only be
effective in chapter 5.1.

o:=-1 B1=-05 PBo:=Pq

We aready know the solution for one center per unit cell and for the prt orbitals from section 4:
SBpTc(k) = a + 2-B4-cos(k-a)

We now introduce two centers per unit cell: ... -][-(1)-(2)-][-(D)-(2)-][-(1)-(2)-][- ---

In this section each center hasone AO (p,).

Because the size of the unit cell has increased, the Brillouin zone gets smaller. As aresult, the range of
k-vectorsis reduced:
]

K(j) = j—2T O<k< >
N-(2a) 2a
CO cosfficients:
Centers of type 1: clB(x,k) = \/%-exp(i-k-Zak)
1 .
Centers of type 2: CZB(p,k) = \/%-exp(l-k-Zau)
Crystal orbitals:
N-1 "
Centers of type 1: v1g(K) = Z cig(n.k) 012
L=0
N-1 "
Centers of type 2: vos(K) = Y copli.k)-02, 4
n=0

Linear combinations of the two crystal orbitals:
(K = Cryig(K) + Cryop (W'
To find the linear combinations with minimal energy the following eigenvalue problem has to be solved:
Hyp-e Hpp 1(Cqp) ) (o\'
My Hpp-e)(C2) \0)
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Problems

5.1 Derivethisequation. Start from the Schrédinger equation.
The Hickel eigenvalue problem

5.2 Show that the following equations hold: Hy; = o ; Hy, = €138, + B,
Analogously onefinds: H,; = €k%8, + B, H,n=a

5.3 Show that the formulae below hold for the energy eigenvalues.
(p and m means plus and minus, respectively.)

SBpnp(k) = +\/B12 + B22 +2:B1-Bo-cos(k-2d)

eBpm(®) = o —/312 + By’ +2-By-Borcos(k-22)

Energy band (1 center) Energy bands (2 centers)
0 T T 0 | T
eBprp(K)
egpr(K)
Bet™ 1 b . egprm(® 1
- | | -
0 1.05 2.09 314 0 0.52 1.05 157
k k
Problem

5.4 The situation on the right-hand side shows the so-called BACK-FOLDING: The blue band
results when the upper half of the red band in the left graph is folded back.
This effect can be explained by means of symmetry arguments. Every k-vector represents a
specific symmetry in the pattern of the atomic orbital contributions forming a CO. If a unit cell
isformed of 2 centers, pairs of AOs form symmetry units. Therefore patterns belonging to
different energy levels become equivalent with regard to symmetry, i.e. they belong to the same
k-vector. - Sketch the two AO patterns for k = 0 and the two AO patterns for k = wt/(2a).
State areason why the latter two AO patterns are energetically degenerate.
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5.2 Second case: B, = B,

The assignment of different valuesfor 3, and 3, will now lead to bond alternation:

a=-1 B1:=-05 po:=-03

SBpnp(k) = ap+J612+ B22+ 2:B9-Bo-cos(k-2d)

eBprm(®) = ap—/ﬁf + By’ + 2By cos(k-2a)

Energy bands (2 centers)
0

eBprp(K) 0% \

eBprm(® L[ -
-1.5 _/_
-2 l l
0 052 105 157
k
r X

Problem

5.5 Explainthe splitting of the energy bands at the so-called X point for $1 # B2 by means of an
orbital scheme.
Solution

The splitting of the bandsis called PEIERLS DISTORTION.

Note:

e ThePeierlsdistortion isa specia case of the Jahn-Teller distortion observed in molecules.
e |t results from choosing different valuesfor 3, and 3.

e Thel pointliesat k =0. It isthe point of highest symmetry of the COs.
The X point liesat k = n/a (here a = 2a).

Problems
5.6 Explainthe Jahn-Teller distortion for cyclobutadiene.
Solution

5.7 Explainwhy oneis entitled to use linear combinations of MOs belonging to degenerate energy
levelsinstead of the original MOs, asit is done in the solution of problem 5.6.
Assign all T MOs of cyclobutadiene to theT” and X point. Explain why alternating bond
lengths are energetically more favourable in cyclobutadiene but not in benzene.
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6. Infiniterings - Three basisfunctions -
Alternating bond lengths

The concept of section 5 is now expanded to 3 basis functions (p,, ps; ad ;). Asin section 3 the model
is thereby made more general since interactions between all valence orbitals are made possible. However,
in contrast to sections 3 and 4 we now have two sets of non-equivalent carbon atoms, a situation that is
frequently encountered in crystals and takes us a step closer to the description of real systems.

Different Peierls distortions can be seen for different bandsin this section, and we will finally see, for the
first time, aband structure and understand what it is.

Vaues of the Coulomb and resonance integrals:
Ogy = =D Bs1 =1 B2 =1
Ups = -1 chl =-9 ch52 =—-.6
O = -1 Bprcl =-5 BpTEZ =-4

Resulting energy eigenvalues:

ey (K) = JB$12 +Basn” + 2B gy B COS(K-22) eBsop(K) = tgs + 5 (K)

eBsom(K) = ags — €g5(K)

2 2
Spcs(k) = /chl + BpGZ + ZBp61Bp62COS(kza) SBpGp(k) = O(,pG + Sp('S(k)

sBme(k) = Ope gpcs(k)

2 2
Spn(k) = /Bpﬂ.‘l + BpTCZ + ZBpnlﬁanCOS(kza) SBpTEp(k) = OLpTL. + ‘C’pn(k)

SBpTcm(k) =gy - spn(k)
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The following figure shows the resulting energy bands for all basis functions. The Peierls distortion is more
pronounced for the p, bands than for the p, bands. There is no such distortion for the s; bands. Thisisa
direct consequence of the choice of different B values. Hence it would be wrong to draw the conclusion

that s; bands show no Pelerls distortion!

Bonding and antibonding bands appear because back-folding occurs.

Thefigureis an example of a BAND STRUCTURE diagram, sinceit displays al interactions present in
acrystal. Given ak-vector, every band reveals the energy resulting from the interactions of the
corresponding basis function on all atomsin this symmetry state.

Additionally, the relative sequence of the bands at every k-vector allows to decide which COs are

occupied and which are not occupied at this k-point.

Energy bands

eBpop(K) : :
pop . r\ poc antibonding Yooa
eBprp(K) \ pr antibonding Yo
prt bonding 4
epprm(K) _ / prb
Bprm 2 poc bonding ¥

pob
£Bpom(K)
eBsop(k) ss antibonding ¥,
¢Bsom(K) so bonding Yo
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Problems

6.1 Change the values of the Coulomb and resonance integrals.
Consider what will happen before changing parameters.
Keep in mind that all these energies are negative and that the  values are smaller than the
corresponding o values according to amount. (Information about the ZDO approximation)
Do not choose unredlistically large values for a and 3, and do not forget to reset the variables to
their original values after this exercise. (Original values)

6.2 In section 3 we have taken the different orientation of the p, orbitals into consideration by
'manually’ changing the sign of the interaction term in the energy eigenvalues of the MOs formed
by this basis function. (Comment) This resulted in a horizontal reflection of the p, band.

Explain why here the p, bands qualitatively have the same shape as the bands of the other COs.
Find geometric as well as algebraic reasons.

6.3 Sketch the p, COsfor cyclohexatriene at the I and X point. Write aMathcad worksheet in
order to find the coefficients of the COs at al centers.
Why are the COs at the X point not the same as any of the MOs of benzene?
Why do the two COs at the X point have a different number or bonding and antibonding

interactions, although thisisimpossible because of the common energy eigenvalue?
Solution

Note that the above band structure only results if one neglects the fact that all ¥ COs actually
interact. The ¥, , and ‘¥, , COs do not interact with the ¥ ; COs because of their symmetry.
To take the interaction of the ¥ ; COs with each other into account, one would have to use the
following linear combination:

| |
¥s = CssbVssbt CssaVssat Cpob Vpsb * Cpsa Vpoa
Although it would be possible, we will not solve this problem within Mathcad. More suitable

software for this purposeis available, for example the band structure program package
BICON-CEDIT which contains many more features.

Problems

6.4 Up to now we have worked with the three basis functions p, ps and s;. Which extension of
the basis makes it possible to describe the band structure of polyacetylene?
6.5 Explainfigure2in[6]. You may find helpin[7].
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7. Density of states (DOS)

How are energy bands actually interpreted? Since k can be interpreted as a CO index (such asj can be
interpreted as an MO index) an energy band provides the information how many COs exist on a certain
level of energy. Thisisvaluable information since in an extended structure the number of energy levels
approaches infinity. In contrast to a molecule where we can talk about frontier orbitals or single MOs
which control the molecule's geometry or reactivity, such effects do not result from one out of a nearly
infinite number of energy levelsin acrystal. Instead, a collective of energy levels may play such arole.
Hence it isuseful to group energy levels with respect to their affiliation to certain energy intervals. Crystal
properties such as reactivity may then be derived from such groups of energy levels.

The DENSITY OF STATES (DOS) isameasure to perform such a grouping of energy levels. DOS(E)
Isthe density of states at energy E; DOS(E)-dE is thus the number of energy levels between E and E + dE.
If Ng isthe number of energy levels up to energy E, then the DOS can formally be defined as follows:

wo

dN

DOS(E) =

and consequently: DOS(NE) =

We examine the bands considered in section 4:

Parameter values: og; = -5 Opg = -1 Oy = 0 Bgp=-1 chs = —0.6 Bprc = —0.6

7.1 DOS of the p,. band
-1
d \ T
SBpTc(k) =gyt Z-Bpn-cos(k-a) DOSpn(k) = ‘(&SBpn(k)) k:= 0,0.0l..g
Energy band DOS(E
1.7 | i | 1.7 |S( )
™)
ngTE ;)
pn(K) | _ eepn(®) L -
SBpﬂ:(O)
— | | _ l
17 0 1.05 2.09 3.14 17 0 5 10
k DOSy:(K)
Problem
7.1 Explain the shape of the DOS plot. Home
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An important aspect is that a band structure diagram is, as a plot of energy vs. k, arepresentation in
indirect space, while aDOS diagram is, as aplot of the density of energy levels against energy (rotated
by 90° clockwise), a representation in direct space. Since representations in direct space are mentally
more accessible, the conversion into direct space, made possible through the introduction of the DOS, is
quite helpful. Furthermore, since a DOS diagram is akind of histogram of the number of energy levels as
afunction of the energy with horizontal "peaks' at energies where high densities of energy levels exist,
such diagrams have a close relation to the MO energy level diagrams familiar to chemists.

7.2DOS of the p, and the s bands

-1
d )
€ (k) = 0op-—2 -cos(k-a) DOS,~(K) := || —¢ (k)
Bpo pc chs Spcs dk Bpo )
d e
€Bgg(K) = agy + 2B g5 cos(k-8) DOSg,; (k) == (&SBSG(k))
o
Energy bands DOS(E)
1.7 1.7 | | |
epr (K f
epns(K)
014 - - PP 04 - ‘ -
A= A
SB (E\ B
pr
“Bpr(Kly gg - S 2 ol .
£Bpo(K) “Bpr ()
-3.82 -3.82 - -
Schy(o)
5
¢Bso a)
—5.66 —5.66 [~ -
£Bs(0)
75 75 | | | |
0 3.14 ~0 2 4 6 8 10
k DOSpn(k) , DOSpG(k) ,DOSg;(K) , x
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Note in the above DOS plots that DOS(k) is the inverse of the slope of €(k), i.e. the steeper the
energy band is, the lower isthe DOS at that energy or vice versa: The flatter the energy band is, the
higher isthe DOS at that energy.

Another aspect of the DOS is also important: From its definition it follows that the integral of the DOS
with respect to energy resultsin a number of energy levels. Hence the integral of DOS up to the Fermi
level (the Fermi level isthe energy level of the highest occupied crystal orbital, i.e. it isthe analog of the
HOMO for extended structures) equals the total number of occupied COs. If the value of thisintegral

Is doubled, the result is the total number of electrons.

To conclude, the DOS curves include the information about the distribution of electronsin energy.

The following figure shows a band structure (left) and a DOS diagram (right) of an AgCl crystal along
different symmetry lines. [8, 10] AgCI forms face-centered cubic crystals with an AgCl distance of
2.77 A. The DOS below the Fermi level is mainly composed of 3p(Cl) levels, followed by levels of
4d(Ag) character. The DOS above the Fermi level shows 5s(Ag) character.

S - :

>

i 1
0 b 5s(Ag)

> 1

E -

5 5]

L 10 - Fermi level
) T~ ¥ 3pc))
15 | 4d(Ag)

L I X W DOS

Advanced use of DOS can be found in [8].
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8. Crystal Orbital Overlap Population (COOP)

In amolecule the overlap population between two atomic orbitals ¢;, and ¢,, due to one electronin

MO v(j) is defined as 2-c(2, j)* -c(u, ])-Sy,. Summed over al electrons present, thisis the Mulliken
overlap population for the AO pair ¢, and ¢,,, providing information about the bonding or antibonding
nature of the interactions between these two AOs.

How can the bonding or antibonding character of the interactions between basis functions be

described in an extended structure?

When we look at the energy bands and the corresponding DOS plotsin section 7, we see that e.g. at
the high energy end of a band, corresponding to highly antibonding interactions, we have a high density
of states. Hence we there have a high density of antibonding states. On the other hand, at the low
energy end of an energy band we have a high density of bonding states.

Since the bonding or antibonding nature of the interactions between two AOs can nicely be described
by overlap populations, the combination of overlap populations and DOS results in a useful measure to
describe the density of bonding or antibonding inter actions between basis functions of a

specific type at a given energy. Theinteractions can include all possible interactions or only one
specific interaction, e.g. the interaction between nearest neighbors.

(Notethat in acrystal orbital we actually do not describe the interactions between two specific AOs
but the average of the interactions between all pairs of AOs.)

The measure we introduce is an overlap population-weighted density of states. Hoffmann called it
CRYSTAL ORBITAL OVERLAP POPULATION (COOP). [1]

We formally define COOP as follows:
COOPL(E) =(1/N) - DOS(E) - Z; (C*(, E) - C(u, E) + C(2, E) - C*(n, B)) - S,
where = A +n (n € N, constant)

e nrepresents the kind of interaction we wish to describe. If n = 1, then the interaction between
nearest neighboring AOs is considered. If n = 2, the interaction between AOs separated by one
AO isconsidered.

N isthe number of AOs, and A isthe AO index, as usual.

DOS(E) isthe density of states of the chosen basis function at energy E.

The C's are the CO coefficients.

For the overlap integrals S, the ZDO approximation cannot be used (S,,, = 6,,), since thiswould
make it impossible to calcul ate overlap populations and hence COOPs.

Here we allow overlap between AOs separated by maximal 2 AOs:

S.y+1:= S, (nearest neighbors), S, ;12 := Sz, S 543 := 4 (two separating AOs).
S, rapidly decreases for increasing n.

As an example we define and visualize the COOPs for the p, basis function. Values of the variables:

821:1 83::0.6 S4::O.1 N:=100 XA :=0..N-1

CO coefficients:  ¢(,k) := \/i;-exp(i-k-a-x) cconj(x,k) = \/%-exp(—i-k-ak)
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ul(x) = mod(k + 1,N)

COOP,p (K) = %-DOSpn(k)-{z (cconj(k,k)-c(ul(k) ,k) + c(k,k)-cconj(ul(x) k))SZ}
A

uo(2) = mod(n +2,N) (N > 4)

COOP3,. (K) == %-DOSpn(k)-{z (cconj(k,k)-c(uz(k) ,k) + c(k,k)-cconj(uz(x) k))s@}
A

ug(2) = mod(x +3,N) (N > 6)

COOP 0 (K) = %-DOSpn(k)-{z (coonj (-K)-c(1a(R) k) + c(2.K)-Cooni 13(2) ,k))-s@
A

COORP contributions
17 I

|
—0.06 0 0.06

COOPp (K) , COOPgpy, (k) , COOPp,. (K) , 0-X

General remarks:
¢ Regions with positive COOP contributions are bonding, regions with negative COOP contributions are
antibonding.
e The amplitude of COOP(E) depends on
¢ the density of states at energy E
¢ thevalue of the overlap integral,
e and the CO coefficients.
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Problem
8.1 Interpret the COOP2p,, COOP3,, and COOPyp, curves at the k-points 0, n/2a and n/a.

Solution

The total COOP isthe sum of all contributing COOPs:
COOPpTE(k) = COOPan(k) + COOP3pn(k) + COOP4pn(k)

Total COOP
1.7 |
egpr(K)
X 0
— l
1'10.06 0 0.06
COORy (K) , O
M. Meyer, S. Glaus and G. Calzaferri QBAND.mcd
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COOP(E)-AE takes dl statesin acertain energy interval and measures their bonding tendency by
means of overlap population. I.e. COOP(E)-AE is the contribution to the total overlap population of
those crystal orbitals (states) whose energy levelsliein theinterval [E, E+AE]. Hence the integral of
COOP(E) with respect to energy up to the Fermi level is the total overlap population of all occupied
energy levels and thus the total overlap population of the specified interaction. If the total COOP is
integrated up to the Fermi level, the result is the total overlap population of a specific basis function. If
thisintegral is positive, this basis function provides a bonding contribution, otherwise an antibonding
contribution.

In the following plot the total COOP curve as a function of the energy is rotated by 90 degrees
counterclockwise and reflected horizontally. The shaded area visualizes the integral of the COOP(E)
function.

Theintegral is calculated below the figure for an assumed Fermi level. Since the result is positive for
this Fermi level, the interactions contributed by the p,, basis function are overall bonding.

0lp Current value of N: N = 100
Current values of S,, Sz and Sy:

S;=1S3=06 S,=01

Change values

COOPy,(K)
o

1.2 0 1.2
egpr (k)

Assumption: Fermi_Level := 0.4

Fermi_Level

E-a \\
COOPpn[E-aCOS[ P oE = 0.015
2 >Ppr )

SBpTg(O)

Problem

8.2 Interpret the values of COOP2p,, COOP3p,, and COOP4y, at theI” and X point for
cyclohexatriene (N = 6). Use the COs sketched in problem 6.3.
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9. Overview: Energy band, DOSand COOP

Energy band

17 | | |
eepn( i
1.7 l | | l l
0 0.52 1.05 157 2.09 2.62 3.14
k
DOS(E
1.7 ! SE) !
m)
ngTl: E}
cepn(9 oL |
ngn(O)
1.7 l | | l
0 2 4 6 8 10
DOSp, (K)
COOP(E)
17
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The above figures allow linking the information provided by energy bands, the DOS and COOPs. The
figures show the corresponding curves for the p,, basis function.

All three visualizations plot the dependency of energy and another variable.

In the case of energy bands the second variable is the k-vector. An energy band shows the energy of all
crystal orbitals of a specified basis function (here: the p, AOs) as afunction of the CO index k. This
corresponds to an energy level chart for the discrete MO energy levelsin amolecule, formed by all p,,
AOs. Sincein acrystal, there is an infinite number of AOs, an energy band consists of an infinite number
of points, thereby forming a continuous line and not afinite set of points.

In the second case the density of statesis plotted as afunction of energy. Conventionaly thisplot is
reflected with respect to the bisecting line of the first and the third quadrant, resulting in a plot with the
DOS-axis pointing to the right and the energy axis pointing upwards. The DOS is large at energies E
where alarge number of crystal orbitals exists within asmall energy interval [E, E + AE] and vice versa.
In the above example DOS is large in the region of k-points 0 and n/a and smallest in the region of
k-point /2a. Hence the above DOS figure visualizes that most of the p,, COs stay at the high and at the
low energy end of the energy interval in which all p, COslie.

The third figure shows the dependency of the CO energy and the overlap population for the
1,2-interaction of the p,; basis functionsin the p, COs. Thereis a high density of bonding 1,2-interactions
for p, COs of low energy, while a high density of antibonding 1,2-interactions appears for energetically
high p, COs. COs at average energies have 1,2-interactions which are neither bonding nor antibonding.
Such interactions are called non-bonding.

Y ou should now be able to understand the paper [7]. Advanced use of DOS and COOP can be found in
[8l.

Summary of sections 4to 8

Home
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10. Band structure of atwo-dimensional carbon lattice

Theideaof thislast part isto expand the learned band structure concept to two-dimensional square
structures.

Definition of the unit cell vector a, =1 a = 1

lengths in the direct lattice:

Definition of the k-point set K ® 9 m ®m K- T 97 =™
in the reciprocal lattice: X ax’ 10 ax" a, y ay 10 ay a
Coulomb integral: o := 0 Resonanceintegral: B := -1

We want to study a planar square carbon lattice with one atom per unit cell.

For the analysis of this band structure the knowledge of the direct and the reciprocal space (i.e. thefirst
Brillouin zone) is necessary. The two-dimensional lattice is shown on the left side of the figure below,
thefirst Brillouin zone is shown on the right side.

The reciprocal vectors b, and by (bold = vectors) are constructed as follows (Comment):
b, L a = bya,=0and b, L 8, = bya,=0 and a,b,=2r and a,b, = 2r.

Elj. y
o B
¥ r=(0,0) A X=(0, %) by_
oo

Z

90 9@

i

. . T M=(%, %)
Direct lattice: a, and a,; angle between a, and a,: 90°

Lengths: |a | =8, |3, |=3

Reciprocal lattice: b, and b; angle between b, and by, : 90 b, v
Lengths: ax'bx = |ax | ' | bx | 'COS(OL) The coordinates in reciprocal space
2n = ac-|by|-1
|b,| = 2nla
|by| = 2n/a,
Home
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In atwo-dimensional square lattice the transformation from the direct to the reciprocal lattice is easy. The
gray-shaded areaisthe |[RREDUCIBLE WEDGE of the first Brillouin zone of the quadratic lattice.

The irreducible wedge of a Brillouin zone is the region that will give all information for the cal culation of
average quantities (e.g. energy, COOP) over all occupied states.

It isimpossible to analyze all k-points. We therefore restrict the analysis to points and lines of high
symmetry. The point with the highest symmetry isalwayscalled I'. Its coordinates are (0, 0) and it lies at
k = (0, 0). Further points of interest here are X and M. In acubic (square) lattice X has the coordinates
(0, ¥%) and lies at k-point (0, n/ay) whereas M has the coordinates (Y4, ¥2) and lies at k = (n/ay, m/ay)
(seefigure above).

Thelines of interest are those connecting the points of interest, here: A, X and Z (see figure).

Problem

10.1 Draw thefirst Brillouin zone for a two-dimensional hexagonal lattice and mark the irreducible part.
The two direct |attice base vectors a, and a, are equal in length and separated by a 120° angle.

In afirst step only the 25(C) orbitals are considered. With this restriction we can define the crystal
orbitals asfollows:

\/—lx/—lla ' a, 0" Ay )
W(k);:ﬁ > Z kak k= (ke ky)"  as= 0 a) A = Y

k—Ok

The coordinates in reciprocal space

The sum runs over every unit cell in the plane, and ¢, symbolizes the 25(C) orbital in the unit cell at
lattice site A.

Home
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The following figure shows a clipping of the direct lattice with the exponential factors of the Bloch basis
orbitals relative to the exponential factor of the Bloch orbital belonging to the lattice point in the center:

N N
L H’\ L, v
0+ W Qo7
-? & .:,"-' \'l‘_?- &
N O e
f\"\ /\\. /\:‘.
o o o+
o Pt T
N Nl T
A W AN
s > s
- O oF *
N )
™ o
Q7 e Nk
- roxl -]
e L }C\F"
X '\i.,‘-' f't. au "'t.."'—
. a .
A W o
o e s
" ) o o
-"| -
x\\ x\'x
Pk ™ o
l"i"' P i
H\f\.‘- \xw- \x\tﬂ
Y , .
. X X
A N\ W
g T &
N F &
o o ?@

We now calculate the energy of the crystal orbital depending on the k-vector.
Asusual, we start with the following equation, directly derived from the Schrédinger equation:

<¥(k) [H|¥(k)>=E<¥(k) | YK >

Instead of summing over all 2s(C) orbitals in both wave functions, we take only one of them in the
second wave function as a reference and multiply by N assuming that for each and every 2s(C) orbital
the interactions with all other 25(C) orbitals are the same. This assumption naturally implies that in our
two-dimensional lattice all atoms have the same environment, i.e. that there are no edge phenomena.
We have been working with this assumption ever since we started to use Bloch functions!

< ‘P(k) | H | N - (1/N)1/2ei(kxaxkx+kyayky)¢kx,ky S-E< \Il(k) | N - (1/N)1/2€i(kxaxkx+kyayky)¢kx,ky >

yyeikar | d(kxaxix+kyayly) « ¢k | H | ¢kx,ky > = E . Yyelikah | d(kxaxixtkyayLy) « ¢k | (I)kx,ky >
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We consider only nearest neighbor interactions, as shown in the next figure, and use the symbols of
the ZDO approximation (Information about the ZDO approximation):

We find: E(kx’ky) -0+ B(eikxax + dhvay 4 gikdax 4 e—ikyay)

Evaluation finally resultsin: E(kx,ky) = o+ 2-B-(cos(kx'ax) + cos(ky-ay))

Note that this result is consistent with the result for the 1D case (egg;(K) = ag+ 2-BSG-cos(k-a)')

Ener = E(ky,k
gyround[g-(kx-axm)},round[g-(ky-awn)} ( X y)

T Y

Energy

Energy

This energy surface describes the k-dependence of the crystal orbital energy.
Home
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The k-coordinates and the symmetries of the COs at the points and on the lines of high symmetry
mentioned above are given in the following table. The symmetries can be understood by examining the
wave functions at the k-points ", X and M shown in the graph below:

I' point ky=0, ky=0 : Full symmetry of the unit cell (Dap)

X point ky=0, ky=nt/ay, . E, 3xC,,i,3%c (Do)

M point ky=n/ay, ky=n/a, . Full symmetry of the unit cell (Dap)

A line (line I'X) kx=0, ky=0..7/a, . E, 3xCy,1,3%c (Do)

Z line (line XM) ky=0..7t/ay, ky=n/a, . E,3xC,,1,3%c (Dap)

2 line (line I'M) ky=0..7t/ay, ky=0..1/a : Full symmetry of the unit cell (D4n)
y

[

Problems

10.2 Verify the symmetries of the described points and lines using the above orbital scheme.
10.3 Compare the situation, which is shown in the energy surface plot, to a one-dimensional structure.

Home
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B
The energies of the COs at the k-points I, X, and M and on the lines of high symmetry Z, A, and Z are

shown in the following figure:

4 View Brillouin zone
2 — —
>
(@]
2 of -
L
_2 — —
-4 | | | |
-3.95 -1.91 0 2.19 4.24 6.28
M r X M
2 A Z

To describe the valence electron structure of a planar square carbon lattice, the basis must be expanded
to al four atomic valence orbitals: 2s, 2py, 2py, 2p,. Hence there will be four bands.

Home
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Problems

10.4 Inthefollowing figure a scheme of the 2p,-COs at the k-points M, T, and X is shown.
Sketch schemes of the 2py- and 2p,-COs at the same k-points.
Compare the schemes of the 2p,-COs with the schemes of the 2s-COs on p. 41.

Note that, for example, I" isthe k-point of highest symmetry although this seems not to be true
regarding the following figure since there are antibonding interactions. However, keep in mind that
the I" point is characterized through the equal orientation (and the equal scaling) of all basis
functionsin the CO and not through the kind of the resulting interactions.

10.5 Draw the band structure diagram of a planar, square carbon lattice by expanding the figure above
by the other three energy bands. Use the assumption that there is no interaction between each
orbital type.

The energies of the bands relative to each other can be estimated from the o- and -interactionsin
the COs at different k-points.

Because of the difference between as and o the energy band of the 2s-COs lies at lower energy
than the bands of the 2p-COs. Furthermore, the 2s-band is stretched vertically relative to the
2p-bands because | Bs | > | Bp |-

o

g
g
: 2 3 9
2
T

—OO oo oo or—
—OO OO oo CR0—

— oo oo Co—
— OO0 Ce0—

M r X M

The examination of more complex chemical problems lies beyond the abilities of Mathcad. We refer to
the tight binding program package, including oscillator strength calculations, which is available with
examples at http://iwww.dcb.unibe.ch/groups/calzaferri .

THREE DIMENSIONS

The band study of diamond is an instructive example. It was shown that 3s orbitals must be included in
order to get it right; see [9].

Cubic lattices are especialy simple. See as example the comparative study of the band structures of the
face centered cubic silver halides AgF, AgCl, and AgBr, published in [10].
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11. Summary of formulae

Energy eigenvalues Wave functions

| N B 3n \" [ L J\
Linear chains: e(J) ._oc+2-B-COS(N+1) v() = Z (N 1)
O-O-O-0-0-0-0

. [ |
Cyclic chains: e(j) = o+ 2-B-cos(ﬂTn) v(j) = \/72 ( 2 ) d)x

Infinite systems: e(k) == a + 2-[3-cos(k-a)l v (k) = \/%Z exp(i-k-ak)-q)x

A
' P
« OO0
—r —  m
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BRAVAISLATTICES

A BRAVAISLATTICE describes the periodic structure of acrystal, not the crystal structure itself. It
isaninfinite set of discrete equivalent points that are ordered in such away that the point pattern looks
the same no matter from where you are looking.

Any point of the lattice can be described in the following way, relative to another point:
T=Mas + @ +Azag Wherea, &, ag arethe primitive basis vectorsand A1, A2 and A3 are
integers.

The basis vectors g, also called primitive vectors, span the lattice.

Examples:
(1D = one-dimensional, 2D = two-dimensional, 3D = three-dimensional lattices or elementary cells)

1D example (T = 1)

o o o o o o o o o

2D example: (T = A aq + Aodp)

A PRIMITIVE ELEMENTARY /UNIT CELL of thelattice is a parallelepiped fulfilling the
condition that the whole crystal is generated if the complete set of primitive tranglations is applied to it.
A primitive unit cell can ssmply be spanned by the three basis vectors a. However, the primitive unit
cell isnot uniquely defined, and it does not necessarily display the full symmetry of the lattice.

Each primitive elementary cell containsone LATTICE POINT.
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Note that the conventional unit cell can be larger than the primitive unit cell by the requirement to show
the full symmetry of the Bravais lattice. The following figure visualizes this by showing the primitive
(blue) aswell as the conventional (green) unit cell of aface-centered cubic Bravais lattice:

Primitive elementary cells having the full symmetry of the Bravais lattice are called WIGNER-SEITZ
(PRIMITIVE) CELLS.

Recipe for the construction of a Wigner-Seitz cell:

e From agiven lattice point straight linesto al neighbouring lattice points are drawn.

e In 2D (3D) the perpendicular bisectors (bisecting planes) of the sides are constructed for all these
connecting lines.

e The smallest volume which is thereby formed is the Wigner-Seitz cell.

Thus, given alattice point, a Wigner-Seitz cell isthe set of pointsin space which are closer to this

lattice point than to any other lattice point.

The following rotatable 3D figure shows the Wigner-Seitz cell for aface-centered cubic Bravais lattice.

Polyhedron("rhombic dodecahedron” )
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Overview of all existing Bravais lattices

Dim. Number of Possible symmetry Space groups
Bravais lattices operations* generated

1 1 5:t,9; Cy, oy, Oh 7 (1-dimensional)

2 5 81,0 C,(n=234,6),2m 17 (2-dimensional)

3 14 32 230 (3-dimensional)

t = trandation, g = glide plane
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RECIPROCAL SPACE AND LATTICE, FIRST BRILLOUIN ZONE

Two lattices belong to each crystal structure: The Bravaislattice and the RECIPROCAL LATTICE.
Crystallographers make extensive use of reciprocal latticesin X-Ray diffraction because the diffraction
image of acrystal isthe representation of the reciprocal lattice of the crystal. In contrast, a microscopy
image is the representation of the crystal structure in real space.

Onetherefore calls areciprocal lattice a Bravais latticein RECIPROCAL SPACE. The reciprocal
lattice of the reciprocal latticeisthe original direct lattice. In reciprocal space the elementary cell
analogous to the Wigner-Seitz primitive cell in real spaceiscaled thefirst BRILLOUIN ZONE.

The following rotable 3D figure shows the first Brillouin zone of aface-centered cubic lattice:

Polyhedron("truncated octahedron™)

Why do we need reciprocal |attices?

One of the most important tools in theoretical treatments of crystalline materials is Bloch's theorem for
periodic systems. By the use of thistheorem, it is possible to express the wavefunction of an infinite
crystal in terms of wavefunctions at reciprocal space vectors.

The reciprocal space vectors of aBravais|attice are called WAVE VECTORS, Bloch wave vectors or
K-VECTORS,

Not only the Bravais lattice is periodic but also the reciprocal lattice. Both lattices are invariant under
application of atransation vector which isalinear combination of the basis vectors of the corresponding
|lattice.
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How can the basis vectors of the reciprocal space be derived from the basis vectors of real space?
Let a1, a and ag be basis vectors of real space, defining a Bravais lattice, and by, by and bs be the
unknown basis vectors of reciprocal space, defining the corresponding reciprocal lattice.
Tranglation vectors in the two lattices can then be written in the following form:

Direct lattice vectors:

T =&+ hoap+ Ageg where Aq, A, and A3 are integers.

Reciprocal lattice vectors:

K = pbg + pobs + pighs where p4, 1y and pi3 are integers.

Because of the periodicity of the reciprocal lattice the following equation must hold:
Y(k+K,rn=Y(k,r) (1)

where ¥ isawave function, k is awave vector, specifying the particular solution of the Schrédinger
equation under discussion, and r is an arbitrary vector in direct space.

Bloch's theorem says that wave functions can only differ from one point of the direct lattice to another by
alinear phase factor:

WK, r+T)=Y(Kk,r) ek (2
Hence the following equations must hold:
Using (1) wefind: Yk+K, r+T) =¥k, r+T) ©)]
Using (2) we find: Y(k+K, r+T)=V¥(k+K,r)-kKT
Using (1) we find: =Pk, r)-ekT.gKT
Using (2) we find: =Pk, r +T)eKT (4

Comparison of (3) and (4) showsthat €KT = 1 must hold. Thisistrueif KT =m-2r for an integer m.
This condition is fulfilled with the following definition of the basis vectors of reciprocal space:

& x -1 2y 2z
bj =2 —— or B := Z-n-(A ) with A = | agx ay a22|
3 (& x &) o 20y 20)
X Z
ay ) alx aly aiz ) e )" b1 ) bix biy biz) )
where a | =|x &y &z | €y | b2 | = | box b2y b2z | & |
a3) \ax agy az)\e) b3) \bsx bay bz )\e)
Proof:
B _5 8; ®ayg ) =’2T[ ﬂ:l=j
b %m ‘Haj[aimkj o J[0 m=j<Sme ik}

Hence: K T :(ulb1+u2b2+u3b3)-(7u1a1+7»2a2 +7L3a.3)
= WAg058y + Aoty + .o+ ughabaas
= MJ?LJ_‘ZTE+M17\‘2'O+ +M3}L3'2ﬂ:
= 2 (pahy + ppho + Hghs)
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SOME EXAMPLES
Hexagonal 2D lattice:

[ T\
Lal\ G 0\_(ea [bl\ T 0\} (o)
1 )
Lm\_z 15'ﬁ}[ex\
b)) | g 250 ey
Remarks; : 3\/5)
al\ . 0 \(ex\l
= ZTE\ : 271\'
[a” {5 (5 e (1
) 2 WV age| o .
. 0 \T\ 1 |1 —cot(?) g 120 =
21 . (2m) | = 1 ‘ e
°°{?) S”(?m ’ s.n(z-_n\ )
3) )
[l
Test:

(ul-b1+ uz-bz)-<7u1-a1+ Xz-az) factor — 2-n-(k1-u1+ u2-7»2)
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D

Simple cubic lattice:

"
. EOO\
a) (a0 0)[&) b1 ) a ex )
1
aZ|I:08.0|-ey| b2|;:2.n.050.ey|
) \00a)le) bs ) L&)
0 0 —
a)
D]
Test:

(m1b1+ppbo+ ngbs)(hyag+rpap+rgas) factor — 2m-(hypg+pp o+ Agpg)

Face-centered cubic lattice:

022l ! SO .
2 2

ar ) &) by ) a a a,7g)
2 2 a a a

%) laa '\% B alle)
2 2 ) a a a)

[+]

Test:

(m1by+ppbo + ngbs)(hyag+rpap+rgag) factor — 27 (hypg+pphap+Agpg)
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Body-centered cubic lattice:

aa a) " A
ar ) 2.2 2 178) by ) 1ai‘ e )
w|=| 2 -2 2 |]g| b |=2n|= 0 = ||e|

2 2 2 a a
33) a a a ez) b3) E}O eZ)

2 2 2) aa )

[+]
Test:

(m1b1+ppbo+ ngbs)(hyag+rpap+rgas) factor — 2m-(hypg+pp o+ Agpg)

Close-packed hexagonal |attice:

11 Yy "
0 o ' —/3
a) | ° 7 16 b1 a 3a &)
a /3a 2
—|_ 2 voa by | = 2.0l 0 ==../3 0 |.
2= e | 2|=27{ 0 ——+/3 0]|¢|
b
a3) 0 0 C) ez) 3) 0 0 1 eZ)
c)
Remarks:
[ a]
L2
ERINES 120°
| EJ :
Lo ll’;a"
11]:=-{]J
L0
[+]
Test:

(m1b1+ppbo+ ngbs)(hyag+rpap+rgag) factor — 2m(hypg+pphap+Agpg)
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ZDO APPROXIMATION

The ZDO ("Zero Differential Overlap") approximation involves the following relations and symbols,
where ¢, and ¢,, are atomic orbitals:

Su = <0 d> = O, Overlap integral
o A=p Coulomb integra
My = <G IH[¢,>= ¢ B A=pzxl Resonance integral
0 dse

e The meaning of the overlap integral is obvious:

An AO overlaps completely with itself, but not at all with any other AO.

e The Coulomb integral o approximately corresponds to the negative ionization energy of an
electron, localized in a carbon atomic orbital ¢. Hence o is a negative quantity.

e Theresonance energy 3 describes the additional stabilization, which occurs when an electron
delocalizes over neighboring atomic orbitals. It is also a negative quantity. However, itsvalue is
smaller than a according to amount.

Note that in the ZDO approximation resonance is only accounted for between nearest next
neighbors.
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MOsAND ENERGY EIGENVALUESOF LINEAR CHAINS

MOs

The MOs are formed as linear combinations of the AOs (p,, orbitals) according to the LCAO-MO
approximation.

The coefficients of the AOs are formed on the basis of a chain placed in abox of length N+1:

O-O-O-C0 OO
|
I | | | 1 |

01 2 3 4 5 N-1 N N+1

The wave function must be zero at the walls. This leads to the following ansatz for the coefficients:

L-m \

N+1)

c(L) := A-sin(
with L running from 1to N.

There is no node for these coefficients what corresponds to the lowest state of energy.
An additional factor Jin the argument of the sine provides nodes for the higher energy levels:

L-J-n\
N+1)

c(L,J := A-Sin(
with Jrunning from 1 to N.

The prefactor A is chosen so that the MOs are normalized correctly:

2 _Sin(L-J-n\

N+1 \N+1)

c(L,J =

In one of the problems the correct normalization of the MOs has to be shown numerically for
some values of N using the abilities of Mathcad.
(An analytical proof is- of course - aso possible, but tricky.)
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ENERGY EIGENVALUES

We start with the time-independent Schrodinger equation. To simplify the notation, we substitute n for
N+1 and ¢ for p,:
H-W=E-¥
Y. H-WY=E-¥*.¥
[¥* H - WYdi=E-[¥* ¥t
2In (Zizq NZeg ) SNAIn) g -H-sin(kdn/n) gy dt) = 2E/N (Zi2; Zrey n | SiNGITN)*-sin(kdn/n) g, dr)
Using the approximations and symbols of the ZDO approximation simplifies this equation.

Left-hand side:
2In - (0t Byzg y SINP(kININ) + 2B -+ Ty g sin(kIn/n)-sin((k+1)3n/n))
It can be shown that the first sum is equal to n/2.
The second sum is equal to the sum with the index running from O to N instead of running from 1 to N-1.

It can be shown that this sum equals n/2 - cos(Jr/n).
Therefore the left-hand side becomes very simple:

2In- (o -n/2+ 2B - n/2 - cos(In/n))
o+ 2 - cos(JIn/n)

Right-hand side:
2E/n - 5,_; \ Sin?(kJn/n)

Again this sum equals n/2. Therefore the right-hand side equals E.

Resubstituting N+1 for n, the equation has the following final form:
E=oa+2p - cos(In/(N+1))

Note that this derivation holds for basis functions (AOs) which are symmetric with respect to a plane
extending perpendicularly to the chain axis. For orbitals which are antisymmetric with respect to this
plane (e.g. the p; orbitals) the different symmetry must be taken into account. This leads to a negative
sign in the interaction term of the energy eigenvalue.
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NORMALIZATION

TheMO y(J) = Z c(L,J)-pr (L) issaidto be normalized if the following equation holds:
L

J m-w(\l) dr=1 (Integration is over all space.)

We expand thisintegral using the explicit form of y:

[Z c(L ,Jl)pﬂL)\(Z c(M,32)-p, (M) de
L JANY, )

This can be simplified in the following way:

ZZC(L,Jl)-C(M,JZ)-J’ Pr(L)-pr (M) dt
M L

Due to the ZDO approximation, the integrals are either equal to zero or to one:

Z Z c(L,J1)-c(M,J2)-8(L,M)
M L

We can therefore formulate the normalization condition in the following way:
For chains, where the MO coefficients are real:

Z Z c(L,J1)-c(M,J2)-8(L,M) = 1

M L

For rings, using the slightly different variables introduced in QBAND:

ZZCconj(kajl)'C(u,jZ)-S(k,u) =1
LA

In order to solve the problem define the left sides of the above equations as matrices, e.g.:

Qu1,21= Y 3 olL.3)c(M,2):5(L,M)

M L

J1 and J2 have to be defined. They can be equated to J.

Subtraction of 1 from the matrix indices for chainsis because matrix indexing starts at 0 in Mathcad.
The matrix can then be displayed using the command 'Q =".

Note that Mathcad can display Q asamatrix only up to N = 17. For larger values of N change the matrix
display styleto 'table'. Also adjust the number format if rounding errors occur.
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THE HUCKEL EIGENVALUE PROBLEM

Eigenvalue problemfor N =4

We start with the Schrodinger equation: H-y = 8-\|1l (1)
Using the variational theorem we find:
v =3 clni)pal(2)’ @
A
Hence: 3l )-(H - ()-pel3) = O ®)
A

Expansion, left-multiplication with p,(1)*, and integration over all spatial coordinates yields:
|

c(l,j)-J pn(l)-(H—s(j))-pn(l)dw....+c(4,j)-J pe()-(H-e())-pr(H k=0 (4

We introduce the following substitutes:
| |

hku = J pTE(}\’)'H'pTE(“) dt (5) S = J pn(K)-pn(M) dr (6)
h;,. isthe energy of orbital p.(A). S\ isthe overlap integral of the
h;.. (A1) isthe energy of interaction orbitals p, (1) and p,(1).

between the orbitals p,(A) and p.(1).

Equation (4) can now be rewritten in the following way (7):
c(1,))-h11 - e(j)-c(1,))-s11 + c(2,))-h12 - &(j)-c(2,])-s12+ ... + ¢(4,])-h1a — & (j)-c(4,])-s14 = O
Since the AOs are al normalized, this equation ssimplifies to:

o(L))-(ha1 - &) + ¢(2.))-(h12 — & (j)-s12) + ¢(3.)-(13— £ ())-s13) + c(4. ) (hra — £ (i)-514) = O

Instead of multiplication with p,(1)*, equation (3) could aso have been multiplied with any other
atomic orbital, resulting in the following equations (8) - (10):

o(1.)-(ha1 - &(j)-522) + ¢(2,))-(h22 — £(})) + ©(3.)-( 23— £ (})-S23) + c(4. ) (h2a — & (i)-54) = O'
o(1,)-(ha1 - £(j)-sa1) + ¢(2,)-(hg2 — & (i)-s82) + €(3.))- (haz — £ () + c(4. ) (haa — £ (i)-s34) = O'
o(L,)-(ha1 - e (j)-s4) + ©(2,)-(haz — & (i)-s42) + €(3.))- (s — £ (i)-su3) + c(4.)-(hag - £ (j)) = 0"
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Matrix notation leads to a simplified representation of equations (7) to (10):

hi1-e() hio—e(j)-s12 hiz—e(j)-s13 hia—e(j)-s14) c(L,)))
ho1—e(j)-sp1 ho—e()) hoz—e(j)-s23 hoa—e(j)-24 || c(2,)) o
ha1—e(j)-s31 ha2—e(j)ss2  haz—e(j) hza—e(j)s3a || C(3.))
hat—e(i)-sa1 haz—s()-sa2 hag—e(i)-saz hag—s() ) \C(4D))

(11)

This equation can only have nontrivial solutions for the c'sif the matrix of the coefficients of the c's forms
adeterminant equal to zero. Thisdeterminant is called the SECULAR DETERMINANT.

If the numerical values of the hy,'sand s,,,'s are known or found by estimation or computation, the
SECULAR EQUATION (secular determinant = 0) can be solved, resulting in the possible values of &,
defining the energy levels of the system. The values of ¢, together with the values of the hy ,'sand s, ,'s,
definethec's.

We now introduce the ZDO (Huckel) approximation:
a=hyy=hp=hg3=hy

B=hip=hy; =hpz=hg=hgg=hgs

h,,=0¢€lse

Sy = 0if A#p

Writing equation (11) using these substitutes, we find:

a—c() B 0 0 (e

o—<(] 0 c(2,]
p n B | ’ ( J_) - (12)
0 B a-tg(j) B c(3.))
0 0 B a-e())\c4))
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o —£(j)

Using the substitution —x(j) = makes it possible to rewrite (12) in the following way:

x({ 1 0 0 N(cewp) "

1 —x() 1 0 ‘ c(2,j) | _
o 1 —x() 1 lle@j!”
0o 0 1 -x(j))\c4.i))

010 0)(c(Li)) c(1.))"
101 0]]|c2,) - c2,))
’- | = x()) _
010 1!l|c@A,j c(3,])
0010)\c4j) c(4.)) )

Thisisaclassical eigenvalue problem. Solution:

010 0)) 0.618 )
vl 101 OH 1.618 0 Bx (i)
X = elgenvas X = € =a+p-X
J 0101 -0.618 . :
0010)) -1.618 )
010 0)) 0.602 0.372 0.602 -0.372)
The jth column of cisan
c 1= cigervecs 1010 H . 0372 0602 0372 0602 | goenyector correspon-
0101 —0.372 0.602 -0.372 —0.602 | ding tothejth eigenvalue
0010)) 0602 0372 0602 0372 ) returmedbyegenvals.
M. Meyer, S. Glaus and G. Calzaferri LinkO7.mcd Created: December 2002

J. Chem. Educ., 2003, 80, 1221 Page 3/3 Modified: June 2003



MOsAND ENERGY EIGENVALUES OF RINGS

MOs

The MOs are formed as linear combinations of the AOs (p,, orbitals) according to the LCAO-MO
approximation.

The coefficients of the AOs are constructed in a manner that they show a periodic behaviour with a
period of 2rt/j (j: natural number) in order to provide a continuous course around the ring and in order
to let the number of nodes grow when the MO index increases.

The following ansatz is afirst step in the construction of the coefficients c(2, j). It accounts for the
mentioned demands:

() = gn(z.n%.j)

A, the atom index, is running from 0 to N-1. j isthe energy level index, also running from 0 to N-1.

As avisualization the coefficients are plotted along the ring. To do this, the formula above is interpreted
as afunction of the variable A with A running continuously from 0 to N. This segment of the A-axisis
then wound up to acircle. Chosen values: j =5, N = 10.

Keep in mind that only the N black dots correspond to the coefficients:

[
o]
|
—
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However, there are two problems with this formulation of the coefficients:

- First they vanish for j = 0, i.e. in the energetical ground state, and for j = 5, as can be seen above.
Thisisclearly wrong:
For j = 0 there should be a constant non-zero value for the amplitude and no node. (As a consequence
of the equivalence of all atomsin the ring, the lowest energy will result if all AOs provide the same
contribution to an MO.)
For j = 5 the coefficients can obviously not vanish, less than ever.

- Second there are 10 nodes for j = 5.
This must be so because for a continuous sinusoidal curve of the kind above there will be 2j = 10 nodes
on theinterval [0, 2x].
However, if we have, for example, 10 atoms (N = 10), the most antibonding MO will have a node
between every pair of two atoms, i.e. there will be 10 nodes. As seen above, thisistruefor j = 5.
Soj =5 must correspond to the highest energy level for N = 10. But with 10 AOs we will have 10
MOs. Hence there must be more than one MO for some energy levels, i.e. there must be degenerate
energy levels!
Performing alinear variation calculation, one finds that for N = 10 there are non-degenerate energy
levelsfor j =0 and for j = 5 and doubly degenerate energy levelsfor j = 1 to 4. Thisresultsin atotal of
10 MOs, as required.

In general, for an even number of AOs all energy levels but the lowest and the highest are doubly
degenerate, while the two levels mentioned are not degenerate. For an odd number of AOs all energy
levels but the lowest are doubly degenerate.

These considerations lead to the idea to accompany the coefficient introduced above with another
coefficient, which meets the same needs, but which does not vanish for j =0 and, if N iseven, for j = N/2.
The following choiceis obvious:

c(n.j) = cos(z.n.%.j)

This pair of coefficientsis able to correctly describe all MOs.

It seems reasonabl e that a non-vanishing MO constructed with the first kind of coefficient has the same
energy like an MO constructed with the second kind of coefficient, the same value of | assumed.
A mathematical proof of this degeneracy follows at the end of this document.
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Asavisualization, the coefficientsfor j = 0to 5 (using N = 10) are again plotted along the ring.
(Please remember that only the black dots, which correspond to the coefficients, have a physical meaning.)
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Does not create an MO.

Combining the coefficients in acomplex exponential provides a convenient shortcut:

A

c(x,j) = exp(i-z-n-ﬁ-j)

Thereal part of this coefficient isidentical to the cosine-coefficient, the imaginary part isidentical to the

sine-coefficient.
The final form of the coefficient includes a normalizing constant:

c(n,j) = /i;-exp(i-z-n%.j)

It has to be shown numerically in one of the problems that these coefficients lead to normalized MOs.
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ENERGY EIGENVALUES
Again we start with the Schrodinger equation. To ssimplify the notation, we substitute ¢ for p;.
H-WY=E ¥
¥*.H-Y=E-9*-¥
[¥* H- $Ydi=E-[¥* - Pdt
UN -] (2201877, He(Z 0 N1 82N, ) dht = EIN - (2520, 187N, ) (B 20.n1 879N, It

1lN'(Z7»=O..N-l Zp=0..N-le-i2nM/N . @2npj/N Jd)x*Hd)udT) — E/N'(Zx=0..N-l ZM:O..N-le-iZTCM/N . d2npj/N 'I(I)x*'d)udt)

Using the approximations and symbols of the ZDO approximation simplifies this equation:
UN-(Zoq€2N - B+3 1 -0+, @2N.B)=EN-(T,,1-1)
LN-( N-B-(cos(2rj/N) — i - sin(2mtj/N)) + N-a + N-B-(cos(2nj/N) + i - sin(2wj/N))) = E/N:N
o+ 2P - cos(2nj/N) = E

Note that this derivation holds for basis functions (A Os) which are symmetric with respect to a plane
extending perpendicularly to the ring at the AO position. For orbitals which are antisymmetric with
respect to this plane (e.g. the p; orbitals) the different symmetry must be taken into account. This leads
to anegative sign in the interaction term of the energy eigenvalue.

DEGENERACY OF THE ENERGY EIGENVALUES

We consider the complex conjugate of the coefficient:

) = [Loof 202

The fourth equation in the above derivation shows that identical solutions result for c(A, j) aswell asfor

Ceonj (%, J) and that therefore the wave functions for c(1, j) and for cconj(, j) have the same energy (if the

value of | does not cause the two kinds of coefficients and hence the MOs to become equal).

Most of the energy levels are therefore expected to be doubly degenerate, i.e. for one energy two linearly
Independent elgenfunctions exist.

Any linear combination of two elgenfunctions to the same (energy) eigenvalue is a'so an eigenfunction to
this (energy) eigenvalue.

We can therefore create other eigenfunctions by forming linear combinations of the above MOs. Itis
desirable to find linear combinations which are real, because real functions can be visualized.

Thefollowing linear combinations convert the two complex wave functions y and yconj to the real wave
functions y; and y,:

v = Y2 (v + yeon)
v, = (V2)(y- Wconj)
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This can easily be seen:

v c(0)) - pr(0) + (1) - p(1) + ... + c(N-1j) - p(N-1)
Veonj = Coonj(04) - Pr(0) + Ceonj(Ly)) - Pr(2) + ... + Ceonj(N-1,j) - p(N-1)

v = Y2((0)) + Ceonj(0,))) - Pr(0) + ¥2(C(L,)) + Ceonj(L)) - Pr(1) + ...
+ ¥2(C(N=1,)) + Coonj(N=1,j)) - p(N-1)
vo o = (U2)(c(0)) ~ Ceonj(0)) - Pr(0) + (1/21)-(c(L)) — Ceonj (L)) - Po(D) + ...

+ (1/2)(c(N—1,) = Ceonj(N—1,j)) - p(N-1)

A short consideration shows that the following equations hold:

%(( ) + cconj (% 5/700{271—1

%( c(%, ) - ceonj(, J)) E\/;S'n(z %J)

Simplification leads to:
[1 3
\|!1(J)—Z cos( ) pr(
[1 3
Wz(J)—Z SH(ZW—J pr(2)

This means that the real MO coefficients introduced first and sketched above produce linearly
independent real MOs of the correct energy.
The values of these coefficients can easily be obtained by taking the real or the imaginary part of the

complex coefficient c(?»,j) = \/j;exp(iz-n-%j).
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DERIVATION OF THE NUMBER OF STABILIZED MOs
INRINGSWITH 4n + 2t ELECTRONS

The energy eigenvalues are given by the following formula:
. j-2-n\
€(j)) = a+2p-cos§ —
() p S( N
Algebraic proof of the degeneracy of the energy levelsin rings

We show that (j) = (N —j) for j ranging from 1to N — 1:

(N —J)2m

S(N - j) = o+ 2BCO{T:|

e(N-j) = 0(+2B-C0$(2n —JZWE)
) = o+ 28-cod 12°)
e(N-j) = oc+2Bcos( N

e(N—-j) =e())

The degeneracy vanisheswhen N — j =j, i.e. when j = N/2. Therefore the highest energy level for even
values of N is not degenerate, while for odd values of N all but the lowest energy level are degenerate.

Number of stabilized M Oswith respect to o

It will do to find the largest value of j < N/2 for which (j) < a holds. Because of the degeneracy of the
energy levels the number of stabilized MOs will be known then:

e()) < a
a+2-B-CO{y2J\ <a
N )
j-2~n\ . .
cos —— >0 IS negative.
{ N (Bisneg )
J-2m < r or I-2m > 3_7: 0< & < Zn\
N 2 N 2 N )
j < EN or j > §N
4 4

The right condition can be ignored since 3N/4 > N/2. Hence this condition provides no information
about the number of stabilized MOs not provided by the left condition.
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Hence if N = 4k (k natural) thereare 1 + 2(k-1) = 2k — 1 stabilized MOs.
(One MO for j =0, two degenerate MOsfor j =1, 2, ..., k-1)

If N=4k + mwithm=1, 2 or 3, thereare 1 + 2k = 2k + 1 stabilized MOs.
(One MO for j =0, two degenerate MOsforj =1, 2, ..., k)
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CHANGE OF SIGN IN THE FORMULA FOR THE p;, ENERGY EIGENVALUES

In our approach the p,, p; and s; basis functions have the shapes shown below.

The p, and s; orbitals both are symmetric relative to a plane extending perpendicularly to the x axis
drawn in the following orbital sketch, while the p orbitals are antisymmetric relative to this plane:

Basis = > Pr

.-f"‘_‘\\\l
— — s
—_— x 0

The ZDO approximation does not automatically take this change in symmetry into account.
Consequently, we have to keep thisin mind when deriving the formulafor the energy eigenvalues. This
is not necessary if the symmetry of the AOs s explicitly taken into account when the overlap integra is
actually calculated, ase.g. in BICON-CEDIT [5], because then the sign of the interaction term in the

formulafor the energy eigenvaluesis always correct.
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HINT TO PROBLEM 4.3

Starting with the Schrodinger equation, one finds:
ep(k) - <Wg(k) [ ¥g(k) >=<¥g(k)[H| ¥p(k) >

Where:

1T— “ika_— —ika?2 — Cika(N=1) T
WB(k)=\/;'|:¢O+e 1ka'¢1+e 1k32-¢2+....+e ika(N 1)'¢(N—1)]

1 ik ik a ik-a-(N—
\I!B(k)=\/;'[¢o+el Lop+e gy e AN 1)-¢N_1]

(Here a complex Bloch function has been used and not one of the real linear combinations. For the
calculation of the energy eigenvalues, this makes things easier and does not change the result.)

In the ZDO approximation the following is valid (consider why!):
< ei-k~a~k . ¢x | H | ei'k'a'u . ¢H >=q - 8(7», u) . e0 + B . 8(7», T —/+ 1) . ei~k~a-(+/—1)

Evaluating the equation using this relation and using the fact that in a ring every atom has two neighbors,
the formula for the energy eigenvalues follows.
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SOLUTION TO PROBLEM 5.5

We describe the orbital situation at special points of the bands. The instability of the orbitals increases
from bottom to top. At lowest energy we have only bonding nearest neighbor interactions, at highest
energy the nearest neighbour interactions are all antibonding.

First we visualize the situation without Peierls distortion, i.e. the situation for 1 = 32. The need for a
degeneracy of the two bands at the X point is obvious, since the two orbital patterns can be
transformed one into the other by trandation. (Remember that we are dealing with infinitly long chains.)

Energy bands (2 centers)

0.4 T T
o000 0000—
EB[}TEPE k)
E;Bprl:m[ k) -1
m0.0.0.0.0.0.0.0
4 | |
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The next graph shows the effect of the Pelerls distortion (B1 # B2). The distance between two atomsis

no longer constant. Again there are only bonding interactions at lowest energy and only antibonding
interactions at highest energy. Of course the energies at these points differ alittle bit from the
corresponding energies in the situation above, but not too much. However, on the right side of the graph
amuch stronger effect is found: The formerly degenerate bands split up significantly. At the X point we
must have a stabilized and a destabilized orbital situation. This can easily be explained by realizing that
due to the alternating bond lengths in one case the bonding interactions dominate, while in the other case

the antibonding interactions dominate:

Energy bands (2 centers)
0.4 | | |

00000000
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THE JAHN-TELLER EFFECT

The JAHN-TELLER EFFECT plays an important role in chemistry and physics. The Jahn-Teller
theorem predicts an instability for degenerate states of nonlinear molecules. The framework of the
molecule will be distorted in a way that the degeneracy is broken, if thereby the energy can be
lowered.

Below we give cyclobutadiene as an example. In a molecule of D4j, symmetry doubly degenerate
energy levels would occur. The first figure shows on the left side the two degenerate m MOs of
cyclobutadiene, as seen from above. Note that these MOs are equivalent linear combinations of the
MOs of cyclobutadiene found in section 2. According to the Jahn-Teller theorem this situation is not
stable, and consequently a distortion to D;, symmetry with the corresponding splitting of the energy
levels is observed, as seen on the right side. The second figure visualizes the splitting of the energy
levels in an energy level chart.

Note that the splitting of the energy levels occurs because here the two MOs are occupied with two
electrons. Therefore the splitting yields a fully occpied MO at lower energy and an unoccupied MO at
higher energy. If the two MOs were fully occupied, no stabilization would result through the splitting,
and the degenerated situation would be favored. This is the situation occurring in benzene.

A
+«——»
= L) I
— P - -
:l oo0coo 7 &8
o I <
@ £ e N i
: M ..__\_1 A
T % |
Molecular Molecular
symmetry: D, symmetry: D,,
A

Energy /eV
v
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ORIGINAL VALUESOF THE COULOMB AND RESONANCE
INTEGRALSIN SECTION 6

Olgs = =0 Pss1:=-1 Bss2 =1
Opg = —1 Bpo1:=—9 Bpo2 :=—6
Opy = -1 Bpr1:=—5 Bpr2 =4
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SOLUTION TO PROBLEM 6.3

a=1 a:=-5 Bp=-1 By =-1 Values for the p,; orbitals

Note:
N-1 . N-1 .
vip® = Y ep(hk)ora wap® = Y eoplik) oy
A=0 “=0

W (k) = Cpy g(K) + Cryrp (k)

COs at the I point:
k=0

le(k) = exp(—1k2a)B1 + Bz Hzl(k) = exp(1k2a)B1 + Bz

EVal := eigenvals

a  Hyp(k A (—3 3
EVal =

Hyo o)) -7)
, o Hyp())) ( 0.707 0.707)
EV = eigenvecs EV =
Hyo) o)) ~0.707 0.707 )
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Solution for the eigenvalue EVal} = -7

Cl = EV()’l

Cy = 0.707

C2 = EVl , 1 C2 = 0.707

clB(k,k) = \/g-exp(i-kla-k) C2B(“=k) = \/g-exp(i-kla-u)

C2- CzB(x , k)
RKHX

0.5

4*::
o y
|
o
- - Il
=
\
| ,-",\
2 )

Solution for the eigenvalue EValg = -3

Cl = EV()’()

Cy = 0.707

C2 = EVl ,0 C2 = -0.707

clB(k,k) = \/g-exp(i-kla-k) C2B(“=k) = \/g-exp(i-kla-u)

C2- CzB(x , k)
KK

0.5
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COs at the X point:

k= -
2a
By =By + 1077 Mathcad encounters problems for 3, = 3,.

le(k) = exp(—1k2a)[31 + Bz Hzl(k) = exp(1k2a)B1 + Bz

EVal := eigenvals

a  Hyy(k A (—5\
EVal =

Hyo o)) -5)
o Hyp))) 0.707 0.707)
EV := eigenvecs EV =
Hyo) o)) -0.707 0.707 )
Solution for the eigenvalue EValg = =5
Cl = EV()’() Cl = 0.707 C2 = EVl’() C2 = -0.707

clB(k,k) = \/g-exp(i-kaa-k) C2B(“=k) = \/g-exp(i-k-za-u)

%
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A
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Solution for the eigenvalue EVal] = =5

Cl = EV()’l Cl = 0.707 C2 = EVl’l C2 = 0.707

clB(k,k) = \/g-exp(i-kla-k) C2B(“=k) = \/g-exp(i-kla-u)

1
|
C-eg(h.k) o
60 0r — Il [
C2-02B(7L ,k) ("‘:
HKHH |
"
l -~
05 1 2 ™
A

The COs of benzene at the X point do not correspond to any MOs of benzene since the X point
corresponds to k = m/2a, i.e. to j = 3/2. However, there is no MO at a non-integer value of j!

The COs at the X point can therefore be imagined as virtual MOs, energetically lying in the middle
between the MOs belonging to j = 1 and j = 2 (cf. section 2). This prediction can easily be verified
by recognizing that the energy of such MOs must be equal to a (cf. section 2). This is in agreement
with the energy of the COs at the X point resulting from the formula in section 6.

The COs at the X point have the same energy. Hence the number of bonding and antibonding
interactions should be equal. Furthermore, the CO coefficients of the 2 centers should change their
sign from unit cell to unit cell since the X point corresponds to the highest k-vector, thus representing
a situation with a node between every two unit cells.

Both properties are not fulfilled. This is a consequence of the fact that the benzene ring is not an
extended system. However, the theory we have developed is only suitable to describe extended
structures. (The Bloch theorem, on which the theory is based, refers to infinitely large rings!)

Hence, the above properties are only fulfilled if the ring is cut between unit cells 0 and 2.

To conclude, the fact that the ring ends join already after the third unit cell and not after an infinite
number of unit cells results in the loss of the two properties mentioned.
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SOLUTION TO PROBLEM 8.1

We show the nearest neighbor interactions (COOP2,y) in red, the 1-3 interactions (COOP3,,) in
green and the 1-4 interactions (COOP ;) in blue. On the right side the positive, negative or neutral
total contribution of the corresponding interaction is shown.

k =m/a:

T

) s afe =
1,2

k = m/2a:
k=0:
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THE COORDINATESIN RECIPROCAL SPACE

Note that in the figure the coordinates of point X are (0, ¥2) whereasin the 1D case (sections 5

and 6) we stated that X lies at coordinate wt/a.
In the first notation X iswritten relative to the basis of the reciprocal lattice, whereas in the
second notation X iswritten relative to the canonical basis. The notations are consistent:

X = (0, %9, = O, + ¥2b, = 0-2n/ay, 0), + ¥:(0, 21/a), = (0, 1/a),

A similar question is what we mean if we talk about the components k, and ky, of the k-vector.
K-vectors are defined relative to the basis of reciprocal space: k = (u,, Hy)p

If we expressk relative to this basis, then py, p, €] =%, %] for the whole first Brillouin zone
in the 2D cubic lattice case.

If we expressk relative to the canonical basis, we get:
K=p,-b, + py-by = py(2n/ay, 0)e + 1y (0, 2n/a) e = (uy-2m/ay, py-2n/a ).
We call the first component of k k, and the second component k.

Hence: Kk, =p,-2n/a, €] —nl/a, n/a, ]
ky = n,2n/a, €] —n/a, n/a |

To conclude:
ky and ky, are the x- and the y-component of the k-vector relative to the canonical basis.

(Thisis consistent with the way the k-vector hias been defined in the 1D case: In section 4 we
2n . ] 2 2 .

have defined: k == <%.j= 125 = .28 or k= b withp €[ 0, %] and k €[ 0, 7/a]
N-a N a a

Finally, one should be aware of the fact that € k& is the linear phase factor, resulting from
Bloch's theorem. Its general form is e"k'T, wherek = p, b, + b, isthe wave vector, and T
isatranglation vector of the direct lattice which here has the form

T=0ha,+ 7Ly'ay = Ae(@, 0) + ky'(Q 6&/) = (Axay, Xy'%/)

The special notation for the translation vector a A using a matrix was chosen to keep the
notation of the phase factor equivalent to its notation in the 1D case.
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THE FIRST BRILLOUIN ZONE FOR THE
TWO DIMENSIONAL CARBON LATTICE

'=(0,0) A X=(0, V) hr

L J

Z

T M=(%, %)
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SUMMARY

SECTIONS1TO 3

Linear chains and rings, built of N carbon atoms, are considered.

In afirst step the MOs resulting from only the 2p, atomic orbitals are of interest. The 2p, AOs are
oriented perpendicularly to the plane of the worksheet, while the chain and the ring lie in this plane.
Hence the MOs resulting are t MOs and, consequently, the p, AOs are henceforth called p, AOs.

Using the LCAO-MO method in the ZDO approximation, the energy eigenvalues and the MOs are
derived that describe these two systems.

In both cases the number of nodes increases with the energy level. On the lowest level there are no
nodes, on the highest level there is a node between any two carbon atoms.

In chains no energy level is degenerate. In odd-membered rings al but the lowest and in
even-membered rings al but the lowest and the highest energy level are doubly degenerate.

The separation of the energy levels decreases with an increasing number of atoms forming the chain or
thering.

The Huckel ruleis discussed.

In asecond step the basis is augmented with 2s, 2py, and 2py orbitals, resulting in four basis functions,
two of which are degenerate: The 2py orbitals are, with respect of forming molecular orbitals and their
energies, indistinguishable from the 2p, orbitals in non-alternating chains and rings. Hence both orbital
types are summarized as p, AOs, while the 2s orbitals are denoted as s, orbitals and the 2py orbitals
asp, AOs.

The qualitative difference between the energy vs. MO index curves for the different basis functionsis
that the curve for MOs formed from p; AOsfalls with increasing MO index, while the other curves
rise. Thisis because of the different symmetry of the p, basis function with respect to the symmetry of
the s; and the p,, basis functions.

A comparison between chains and rings shows that the energy vs. MO index curves for a particular
basis function have asimilar course.

Since the curvature of aring approaches zero when its radius approaches infinity, any intercept of an
infinitely large ring is undistinguishable from a segment of alinear chain.

In an infinite chain edge phenomena do not exist. However, the linear chain approach made in
chapters 2 and 3 will always produce wave functions with typical edge phenomena, no matter how
many atoms are included in the calculation.

Sinceit isthe goa of this course to describe extended systems, i.e. systems consisting of an infinite
number of atoms, it is therefore favorable to use rings and let the ring size approach infinity.
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SECTIONS4TO 8

The description of extended systems is based on Bloch's theorem which states that the wave function
(for agiven basis function and a given energy eigenvalue) of an infinitely large ring has such aform that
it only differs by a constant phase factor between neighboring ring positions.

The Bloch functions / orbitals describe the wave function at a given ring position in agreement with this
requirement.

MOs for extended systems, built of Bloch functions, are called crystal orbitals. They are no longer
functions of adiscrete MO index, as MOs are. Instead, they are functions of the continuous
wave-vector or k-vector k, which can be imagined as a symmetry label of the crystal orbitals. In the
one-dimensional case the k-vectors belonging to all possible COs form the interval [0, n/a], which
corresponds to half the first Brillouin zone of reciprocal space. k = 0 represents the most bonding
crystal orbital, k = n/athe most antibonding CO with respect to the chosen basis.

Since in extended systems there is an infinite number of energy levels, the plot showing the CO energy
as afunction of the k-vector results in a continuous curve, which is called an energy band.

The superposition of the energy bands of several / all basis functions of interest is called a band
structure diagram. In such a diagram one can see in what energy regions the COs of the various basis
functionslie.

A difficulty of band structure diagramsis that they hide information that MO energy level diagrams
immediately provide, namely, the information in which energy regions the number of energy levelsis
higher and where it islower. Thisinformation is provided by density of states (DOS) diagrams.
DOS(E)dE is the number of energy levels between E and E+dE.

As a consequence of this definition, the inverse of the slope of an energy band is equal to the DOS. A
good mnemonic is to keep in mind that the flatter an energy band for a basis function is at a certain
energy, the larger isits DOS at this energy.

Integration of the DOS up to the Fermi level resultsin the total number of occupied COs.

The great benefit of the DOS is that the superposition of all DOS curves of aband structureisa
diagram analogous to the familiar energy level charts used when dealing with molecules. It visualizes
how many energy levels exist in a certain energy region of an extended structure.

The crystal orbital overlap population (COOP) is an overlap population weighted density of states.
COORP curves visualize the density of bonding or antibonding interactions between basis functions of a
specific type as a function of energy. Regions with positive COOP contributions are bonding, regions
with negative COOP contributions are antibonding.

COOPs can describe specific interactions (e.g. 1,3-interactions) or the sum of all interactions, if all
non-zero COOPs are added. In the latter case one talks about the total COOP.

The integral of COOP(E) with respect to energy up to the Fermi level is the total overlap population of
all occupied energy levels for the specified interaction. If the total COOP is integrated up to the Fermi
level, the result is the total overlap population of a specific basis function.
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Many extended systems show a behavior which indicates that there are two or more sets of
non-equivalent atoms. Hence there are also two or more sets of non-equivalent basis functions. Such a
system is polyacetylene, a substance with alternating C-C bond lengths, a phenomenon that can not be
described with one set of equivalent atoms.

In cases like these more than one atom is contained in the unit cell. The Coulomb and resonance
integrals of the basis orbitals of these atoms can be chosen independently in order to model the
situation observed. The crystal orbitals for the non-equivalent basis orbitals are formulated separately,
and linear combinations of these crystal orbitals are formed in such away that energy is minimized.
The resulting energy bands show the phenomenon of back-folding: Because of the increased size of the
unit cell, the Brillouin zone gets smaller. Consequently, the energy bands have to fold back one or
severa timesto fit in the smaller Brillouin zone.

The non-equivalence of the basis orbitals can also lead to a splitting of the energy bands at the folding
points. This phenomenon is called Pelerls distortion. It isa special case of the Jahn-Teller distortion
observed in molecules.
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INTRODUCTION TO BASIC TERMS OF BAND STRUCTURES®
INSTRUCTIONS FOR TEACHERS

Marc Meyer, Stephan Glaus, and Gion Calzaferri
University of Bern, Frelestrasse 3, CH-3012 Bern, Switzerland

Goals

Why is graphite black and an electric conductor, while diamond is colorless and an insulator?

Why is the silver sulphide molecule Ag,S colorless, while silver sulphide as a bulk material is a
black semiconductor?

These and similar questions relate to extended structures and cannot be answered using methods of
elementary quantum chemistry. Instead, new terms and methods are needed. The explanation of
extended structures starting from molecules as building blocks has been well educated in earlier
publications. [1 - 4] However, all these approaches lack the visualization and interactivity needed to
concretize this abstract topic, a ssimple consequence of the limited possibilities of printed material.
Mathematical program packages such as Mathcad enable a variety of new possibilities to open this
important topic to a broader audience.

Our goal in this publication is to introduce the terms and methods needed to describe extended
structures and their properties in an interactive way and by extensive use of the visualization
features of Mathcad. We will not answer applied questions as the ones asked above but enable the
user to answer them himself using appropriate tools. He should eventually understand the concepts
needed to perform quantum chemical calculations on extended systems, be able to analyze and to
grasp the results of such calculations and be in the position to understand corresponding research
literature.

The theory needed to describe extended systems and their properties includes the following terms
which will be introduced within this publication: Translational symmetry, reciproca space, Brillouin
zones, Bloch functions, wave vectors, crystal orbitals (COs), energy bands, the Peierls distortion,
band structures, density of states (DOS) and crystal orbital overlap populations (COOP).

For users who do not only want to acquire the theoretical knowledge but want to perform

calculations themselves, we provide a complete freeware software package allowing to compute and
visualize band structures and DOS diagrams, including many worked examples. [5]
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The user can achieve the goals of this course

-

-

+

+

+

by poring over the short textual explanations of the new terms, when they are introduced,

by studying the extensive visualizations, the idea of which is to concretize the abstract
theoretical approach and to provide avisual road to comprehension,

by deepening their comprehension by modifying the values of variables and parameters and
by precisely analyzing the changes resulting in the graphical representations, as suggested in
the problems,

by relentlessly solving ALL problems provided. This is indispensable since a major part of
the theory is not explained in textual form but will become comprehensible within the
problem-solving process,

by spending the many hours needed to work through this densely written course.

Performance Objectives

At the end of this course the user should be able to:

-

+
+

explain how the energy eigenvalues and the coefficients of © molecular orbitals (MOs) of
finite linear chains and rings are cal culated.

sketch the t MOs of finite linear chains and rings for different energy levels.

explain why an extension of the basis to three functions is useful, explain the difference
between the eigenvalue formulae for the different basis orbitals, and reason why the same
MO coefficients are used for al three basis functions.

explain the transition from finite to infinite rings, starting with the Bloch theorem and ending
up with crystal orbitals. He should be able to emphasize the differences of MOs and COs,
energy states index and wave vectors.

precisely explain the meaning of the terms Bloch function, wave vector, crystal orbital,
energy band and band structure.

explain the characteristics of reciprocal space and know what the first Brillouin zone is and
what its significance is within the theory of band structures.

explain when and why back-folding of energy bands occurs and in what situation the bands
split at the X point.

sketch all sorts of energy band diagrams met in this course, be it split or not split back-folded
or not back-folded bands, and interpret the symmetry and shape of these bands.

explain the meaning of the DOS and argue why this measure is a valuable tool in the
discussion of extended systems. He should know the definition of the DOS and should be
ableto sketch atypical DOS figure and correlate it with the corresponding energy band.

Journal of Chemical Education Vol. 80 No. 10 October 2003



Journal of Chemical Education

Published by the Division of Chemical Edueation of the American Chemical Society

+ describe the meaning of COOPs, compare them with Mulliken overlap populations in
molecules, explain their definition, and sketch typical population curves on the basis of a
given set of COs at different k points.

+ explain the expansion of the band structure theory to two dimensions. He should aso be able
to make the logical step to three dimensions and be aware of the resulting changes and
conseguences.

+ sketch band structure diagrams for the two-dimensional carbon lattice for al basis orbitals
and explain the run of these curves.

+ dstart working with the tight binding program package BICON-CEDIT. [5]

Prerequisites

This Mathcad course cannot replace atextbook or alecture on the abstract topic of band structures.
Rather, it is our ideathat this course should be used as an independent study project for students at
the undergraduate level that is accompanied by reading a textbook such as Solids and Surfaces by R.
Hoffmann [1] and by assistance, e.g. by a graduate student.

The following prerequisites are indispensable in order to succeed in this course:
+ Knowledge and mastery of the fundamental's of quantum chemistry. An introductory lecture
on quantum chemistry should have been attended.
+ Moderate skills with Mathcad.
4+ Comprehension of the following introductory texts that can be opened vialinks in the main
QBAND workshest:
+ |nformation about Bravais lattices
+ |Information about reciprocal lattices

Overview of the Mathcad document

1. Preliminary Information
The goa of the course, prerequisites, performance objectives and a short introduction are
given.

2. Finite, one-dimensional systems - One basis function
Most chemists are more familiar with the discrete energies of molecular orbitals than with
band structures of crystal orbitals although the two approaches are essentially similar. Our
didactical approach istherefore to start with the description of the = molecular orbitals of
finite linear and cyclic unsaturated hydrocarbon chains.
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3. Finite, one-dimensional systems - Three basis functions
The chains and rings of chapter 2 are no longer described using only p, AOs but also using
Ps, and s orbitals. This enhances the understanding of the effects resulting from different
shape and orientation of the AOs.

4. Infiniterings - Three basis functions
For the treatment of infinite rings or chains, the Bloch theorem is introduced as well as Bloch
orbitals, the wave vector and the first Brillouin zone. Infinite rings are then described using
Bloch crystal orbitals and energy bands.

5. Infinite rings - One basis function - Alternating / Non-alternating bond lengths
The effect of bond length aternation on the shape of the energy bandsisinvestigated. The
concepts of back-folding and the Peierls distortion are introduced.

6. Infiniterings - Three basis functions - Alternating bond lengths
The bond length aternation is applied to the expanded basis set, resulting in p, ps, and S;
bands.

7. Density of states (DOS)
The DOS isintroduced and calculated for the bands discussed in chapter 6.

8. Crystal Orbital Overlap Population (COOP)
After introduction of the term, different COOP contributions and the total COOP are
calculated for the p, basis.

9. Overview: Energy band, DOS and COOP

10. Band structure of atwo-dimensional carbon lattice
Theidea of thislast part isto expand the learned band structure concept to two-dimensional
sguare structures. In the course of this, the understanding of reciprocal space is deepened.
11. Summary of formulae

How ToWork Through This Course

+ Seriously working through the course, including the solving of all problems, will take
between three days and two weeks, depending on the user’s previous knowledge.

Users with significant lacks of previous knowledge and mathematically untrained users may
have to spend more time to get the full benefit from the course.

+ The crucia point deciding how valuable this course is for the user is whether ALL problems
provided are solved or not. Significant parts of the theory will only be clarified as part of the
problems. We therefore strongly encourage the users not just to “read” the main worksheet,
“play” with some variables and solve the one or the other problem. Thiswill undoubtedly
lead to awoolly comprehension and to the feeling of not having understood what the point of
al thisis.
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The problems range from simple visualization exercises to quite challenging problems that
relentlessly test the thorough understanding of theory.

+ Thetheory behind this course is rather abstract. Since we can and do not want to replace a
textbook the user should read a textbook before or while working through QBAND. We
especially recommend Nobel Prize winner Roald Hoffmann’ s excellently written book
Solids and Surfaces. [1]

+ |norder not to blow up the worksheet too much and to avoid atransfer of the contents to
dlips the main document contains the indispensable parts of theory, while supplementary
material such as further reading, more detailed explanations, mathematical derivations, hints
or solutions to some problems have been put into separate worksheets. These can be opened
as popup windows via hyperlinks that can be found throughout the main document. The
reading of these appendices is not compulsory, and the degree to which the user goes into
themisup to hisor her claims. However, pretty much extrainformation can be found within
these documents, and this may significantly deepen the insight into theory.

+ People lacking fundamentals of quantum chemistry are recommended to postpone QBAND
and to first fill their knowledge gaps in quantum chemistry, e.g. with John P. Lowe’ s book
Quantum Chemistry. [2] This book includes—in its last chapter — a treatment of extended
systems and can therefore partly replace Hoffmann’s book.

+ We have worked hard to draw an easily comprehensible flow from elementary quantum
mechanics to research level topics such as the quantum-chemical description of three-
dimensional crystalline systems. The user can find answers to most of his or her potential
guestions by carefully working through the worksheet, by solving the problems and by
studying the linked appendices. Nevertheless, questions may arise that cannot be answered
without further knowledge. Hence faculty should delegate e.g. aPh.D. student to help the
users who are stuck with their questions.

+ At the end of the course, the student should be capable and encouraged to use our research-
level tight binding program package BICON-CEDIT, which includes oscillator strength
calculations and many more options. It is available with examples free of charge. [5] The
students should a so be able to understand and to benefit from the research publications [6 -
10] that will still deepen and broaden their understanding. In [8], for example, the terms
related to band structures are transferred to large cluster structures. The publications are cited
in the course, where suitable.

4 Inour department the QBAND course is organized in the following way:

Groups of two 6™ semester chemistry students work through the course. They are given half
aweek of time. A PhD student is at their disposal to answer questions and to help with the
problems. The degree to which the students can compl ete the course depends on their skill.
Eventually, the best students have time to calculate the two-dimensional carbon lattice with
the tight binding program package BICON-CEDIT. [9]
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Technical Details

+ The course was written for Mathcad 2001i.

+ Interested faculty should download the zip files and extract them to an appropriate directory.

+ Theexterna links are files which must be placed in the same directory as Qband.mcd. These
are supplements that enrich the material and increase the depth to which students can use the
documents to learn band structure.

+ All files are optimized for adisplay resolution of 96 dpi. 120 dpi also work, but the layout is
significantly better using 96 dpi.

+ A pdf file of the main program is provided for potential user examination.

Contact

Gion Calzaferri

Department of Chemistry and Biochemistry,

University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
E-Mail gion.calzaferri @iac.unibe.ch

Tel. +41 31 631 42 36

Fax +41 31 631 39 94
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