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ARTICLES 

Molecular Geometries by the Extended Huckel Molecular Orbital Method 
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Switzerland (Received: April 28, 1988; In Final Form: February 8, 1989) 

Bond length calculations with the extended Hiickel molecular orbital (EHMO) approximation can be improved by adding 
a two-body repulsive energy term and a distance-dependent Wolfsberg-Helmholz constant K = k exp(-GR). As demonstrated 
in the case of simple homonuclear two-level interactions, such a distance-dependent K leads to problems, however. This 
drawback of the otherwise very useful improvement of the EHMO method can be overcome by applying K = 1 + K exp(-G(R 
- do)). do is equal to the sum of the orbital radii of the two adjacent atoms, and K is calculated from the weighted 
Wolfsberg-Helmholz formula. The new formula leads to good potential energy curves for diatomic and for polyatomic molecules. 

1. Introduction 
The extended Huckel molecular orbital (EHMO) theory pro- 

vides a good initial approximation to the electronic structure of 
complex molecules. It is the simplest of the all valence one-electron 
theories and is very useful for advancing our understanding of 
molecules, complexes, semiconductors, and other systems. The 
search for the stationary points of energy hypersurfaces, especially 
for their local minima and saddle points, is of fundamental sig- 
nificance for studies of chemical reactivity. The EHMO method 
in its original form has been successfully applied to describe 
pathways in important organic and inorganic reactions.'" 
Problems arising from overestimating "counterintuitive orbital 
mixing" have been discussed and solved by introducing the so- 
called weighted Wolfsberg-Helmholz formula.' Despite this, the 
EHMO method in its original form does not correctly include 
electrostatic interaction and therefore fails in many cases to yield 
good potential energy curves for stretching modes. Anderson and 
Hoffmann6 have shown how this deficiency can be overcome by 
adding two-body electrostatic correction terms, applying the 
Hellmann-Feynman theorem. To derive the two-body electrostatic 
interaction energy, the exact electronic charge density p(R,,r) for 
a diatomic molecule a-0 is written as 

P(RJ) = P B ( ~ )  +  PAR^-^) + PNPF(RJ) (1) 

where the origin of the coordinate system is on nucleus 0. pB(r) 
and p,(R,-r) are atomic charge densities, centered on nucleus 
0 and nucleus a. These densities are computed by using the same 
Slater orbitals as those in the extended Huckel calculation. 
pNPF(Ru,r) is the %on-perfectly-following" correction to the atomic 
charge densities which makes eq 1 exact. The energy E(R) is 
expressed as sum of the electrostatic two-body correction EUB(R) 
and the extended Huckel binding energy AEEHMO(R): 

(2) 

The extended Hiickel binding energy is calculated according to9 

E(R) = EaB(R) + AEEHMo(R) 

(1) Hoffmann, R. J. Chem. Phys. 1963, 39, 1397. 
(2) Ballhausen, C. J.; Gray, H. B. Molecular Orbital Theory; Benjamin: 
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J .  Chem. Soc., Perkin Trans. 2 1975, 559. 
(5) Hoffmann, R.  Angew. Chem. 1982, 94, 725. 
(6) Albright, T. A.; Burdett, J. K.; Whangbo, M .  H. Orbital Interaction 

(7) Ammeter, J. H.; Blirgi, H.-B.; Thibeault, J. C.; Hoffmann, R. J .  Am. 

(8) Anderson, A. B.; Hoffmann, R. J. Chem. Phys. 1974, 60, 4271. 

in Chemistry; Wiley: New York, 1985. 

Chem. SOC. 1978, 100, 3686. 

A E E H M o W  = EEHMo(R) - Cb,E,O (3) 

where Cb,E,O is the sum of the atomic valence orbital ionization 
potentials, each of them times the orbital occupation number b,. 

In a short article,'O Anderson discussed the basis of the EHMO 
method with corrections and tried to improve calculations of 
dissociation energies by multiplying the Wolfsberg-Helmholz 
constant with exp(-SR): 

( 4 4  Hij = )/2K(H,i + Hjj)Sij 
K = k exp(-SR); k = 2.25, 6 = 0.13 A-' (4b) 

In later applications of this approach, he obtained good results 
on many different  system^."-'^ 

2. Criticism 
Despite these interesting results, formula 4b leads to problems, 

because K becomes smaller than 1 for large bond distances. These 
problems do not affect the results in the neighborhood of the 
energy minimum, but they lead to wrong behavior at medium and 
large bond distances. This is an unnecessary burden to the oth- 
erwise useful method. We shall therefore show how formula 4b 
can be corrected by fully maintaining the advantages of a dis- 
tance-dependent K. 

Let us first explain why the condition K > 1 for R < a should 
always be fulfilled. H2+ is the simplest one-electron system that 
can be treated very accurately within the LCAO-MO approach. 
The results are 

{ is used as a variational parameter which takes the values { = 

(9) Kutzelnigg, W. Einfuhrung in die Theoretische Chemie; Verlag-Che- 

(10) Anderson, A. B. J. Chem. Phys. 1975, 62, 1187. 
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(12) Anderson, A. B. Phys. Reu. E 1977, 16, 900. 
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(14) Anderson, A. B.; Grimes, R. W.; Hong, S. Y. J. Phys. Chem. 1987, 

(15) Anderson, A. B.; Hong, S. Y.; Smialek, J. L. J. Phys. Chem. 1987, 
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2 at  R = 0, { = 1.228 at  R = Ro, and { = 1 at  R - a. Bond 
length and bond energy calculated with this approach differ by 
less than 1% from the experimental values. 

Let us examine the energy difference between the bonding and 
the antibonding orbital: 

( 6 )  
2 

1 -s2 E+ - E- = - (HAB - HAAS) 

Since HAA and HAB are both negative and S is positive, the 
condition HA, < HAAS must hold to avoid crossing of E+ and E-. 
In the case of H2+ this is fulfilled. 

More generally, a two-level interaction X-X with HAB = H B A  
can be described as 

- e H A B -  CS 
I = O  lHM H A B -  ES HAA- E 

from which we get 

HAA + HAB HAA - HAB 
E + =  l + s  ' e - =  1 - s  

and therefore 

Dividing AE+ by AE- leads to 

< 0 ,  f o r O < S < l  AE+ 1 - s  - = -- 
AE- 1 + S  

This means that in the interval 0 < S < 1 AE+ and AE- never 
do change their sign. If X-X forms a chemical bond, c+ describes 
the bonding interaction and c- the antibonding interaction in the 
neighborhood of the equilibrium bond distance. As a consequence, 
E+ < t- and therefore AE+ < AE-. From this follows that AE+ 
and AE-, and therefore E+ and E-, will never cross in such a 
two-level interaction. In our opinion any semiempirical param- 
etrization should take this aspect into account. 

If we now approximate the off-diagonal elements HAB by means 
of eq 4a, we get 

HA, = KHAAS (8) 

Inserting (8) into (7) leads to 

We conclude that AE+ and AE-, and therefore E+ and e-, do not 
cross, as long as K is larger than 1. One of the basic rules of the 
M O  theory is the following:' 

"Constructive interference of AOs leads to bonding MOs ex- 
hibiting one-electron energies lowered relative to the weighted 
average of the diagonal elements Hii of the contributing A&, while 
destructive interference leads to antibonding MOs exhibiting 
one-electron energies raised relative to the corresponding average 
of Hiis." If we allow K to become smaller than 1 ,  this rule is 
obviously violated. 

We now estimate the dissociation energy De of homonuclear 
diatomic molecules that, to a first approximation, can be described 
by 9, Le., by a electron configuration. Such molecules are 
H2, Li2, ..., Cs2, Cu2, Ag,, Au2. 

Within the extended Huckel approach, De should be approx- 
imately equal to -2AE+:16-18 

S 
De z= - 2 H U ( K  - 1 ) -  

1 + s  

(16) Calzaferri, G. Chimia 1986, 40, 74, 435. 
(17) Calzaferri, G. Chem. Phys. Lett. 1982, 87, 443. 
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Figure 1. Adiabatic ionization potentials of homonuclear dimers versus 
ionization potentials of the (ns)' electron of the atoms: (top) Liz to Csz; 
(bottom) H2, Liz, ..., Csz, Cuz, and Ag2. 

SCHEME I 

If K < 1, De would become negative which corresponds to a 
nonphysical situation. Similar arguments hold for the energy of 
the first electronic transition u, - u and for the first adiabatic 
ionization energy of these molecules.B6J8 It is interesting to note 
that, from the expression for e+ and eq 8, one would expect a linear 
relationship to hold approximately because the ( ns,lnsi) overlap 
integral in these homonuclears is very similar: 

IP[X2(i)] = a0 + alIPIXi] ( 1  1) 
with a,  = (1 + K S ) / ( l  + S )  and with a. reflecting the elec- 
tron-electron interaction, not included in the one-electron orbital 
energy E+. This means that the ionization potential of the dimers 
is proportional to the ionization potential of the atoms plus a 
constant. 

In Figure 1 we show that this prediction is correct for the 
alkali-metal dimers and that it is also a good approximation for 

(18) Mulliken, R. S .  J .  Chim. Phys. 1949, 46, 497. 
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TABLE I: Comparison of Experimental and Calculated Data of Some 
Diatomic and Polyatomic Molecules" 

TABLE II: Comparison of Experimentnl and Calculated Data for 
Molecules with C-0 Multiple Bonds" 

a. Diatomic Molecules molecule re IP  A -  X AE Do" 

molecule re IP, A - X  AE Doa co 1.13 14.01 c + IZ+ 11.09 
1.15 13.18 u l d  u2 4.75 9.43 

Si0 1.51 11.43 c - I2' 8.26 
1.55 11.73 a ' d  + 5' 3.7 8.20 

0.74 15.43 l2,,+ - '2.' 11.37 4.48 
16.74 5.52 

1.74 1.05 
2.88 2.18 molecule 'C IP HOMO LUMO 
2.85 1.66 eo, 1.16 d 14.01 

0.80 
2.67 
2.31 
2.48 
2.8 1 
1.24 
1.28 
1.60 
1.63 
1.46 
1.38 
1.62 
1.71 
1.27 
1.42 
1.13 
1.35 
1.53 
1.59 
1.51 
2.20 

15.37 
5.0 
5.22 
7.56 
7.82 

12.15 
12.11 
7.7 
9.50 

11.23 

1 1.26 
12.75 
12.86 
14.01 
13.35 
11.33 
11.11 
1 1.40 
11.10 

1.55 3.15 
6.21 

2.17 5.83 
3.28 2.43 
3.17 2.66 
2.91 2.7 
4.32 3.91 
3.71 2.28 
3.42 3.74 

4.43 
10.98 4.07 

1 1.09 
2.74 5.10 

7.35 
2.65 5.36 

8.26 
0.93 1.38 

b. Polyatomic Molecules 
molecule r. IP HOMO LUMO 

H20  0.96 105.2 12.61 

H2S 1.33 92.2 10.47 

COX 1.16 d 13.77 

1.15 111.5 12.81 nbl 0*b2 

1.39 103.0 11.46 nb, a*bz 

1.40 d 13.74 7rrg 7r*lru 
CH2O 1.21, 1.10 121.1 10.88 

1.43, 1.18 124.0 11.88 nb2 a*bl 
CH4 1.09 e 12.99 

SiH4 1.48 e 12.82 
1.15 e 13.74 at2 a*t2 

1.58 e 14.10 atz a*t2 

" For each molecule, the upper and lower numbers represent experi- 
mental and calculated data, respectively. Distances are in angstroms 
and energies in electronvolts. 1 + K = 1.75, 6 = 0.13. bDo(calcd) = 
DJcalcd) - 1 /2wc. 'Not directly comparable symmetry states. 
dLinear. 'Tetrahedral. 

the series H2 to Ag2. From this data we extrapolate IP[Au2] = 
9.18 eV which has not yet been measured, as far as we know. The 
experimental values have been taken from ref 19-21. 

Equation 11 supports the general validity of Scheme I for the 
description of the (nsuE,nsuu) levels and of the BIZ,+ - XIBE+ 
transitions of H2 to A u ~ . ~ ~ ~ ~  h,, is the atomic valence orbital 
ionization potential, and h,' is the valence orbital ionization po- 
tential after the atoms have approached bond distance. 

The aim of this section is to emphasize that the above given 
interference rule should not be violated in a one-electron scheme 
for the description of chemical bonds, unless very special conditions 
apply as discussed in ref 7. Consequently, K > 1 must be fulfilled 
for finite bond distances. 

3. Correction 
We now give a correction that maintains all the advantages of 

a distance-dependent K but circumvents the mentioned problems 
of eq 4b. We propose the following equation: 

K = 1 + K exp[-G(R - do) ]  (1 2a) 

K and 6 are positive empirical parameters while do is equal to the 

(19) Kappes, M. M.; Schar, M.; Schumacher, E. J.  Phys. Chem. 1985.89, 

(20) Morse, M. D. Chem. Rev. 1986, 86, 1049. 
(21) CRC Handbook of Chemistry and Physics, 55th ed.; CRC Press: 

1499. 

Bota Raton, FL, 1974. 

1.20 d 13.66 r7rB "8"" 

CHzO 1.21, 1.10 121.1 12.18 
1.23, 1.08 119.0 11.88 nb2 **bl 

For each molecule, the upper and lower numbers represent experi- 
mental and calculated data, respectively. Distances are in angstroms 
and energies in electronvolts. 1 + K = 2.00, 6 = 0.35, and 1 + K = 2.25 
for SiO. bDo(calcd) = D,(calcd) - 1/2w,. cNot  directly comparable 
symmetry states. dLinear. 

sum of the orbital radii r,(A) + r,(B) which are defined by the 
following equation: 

For Slater-type orbitals this leads to (14a) and in case of double-{ 
functions to (1 4b): 

a, is the Bohr radius, and do corresponds approximately to observed 
bond distances. This means that in the neighborhood of the 
equilibrium bond distance, eq 12a takes the simple form 

(12b) 
Instead of introducing a new parameter K, this allows to calculate 
K by means of the weighted Wolfsberg-Helmholz formula' a t  R 

K(R=do) = 1 + K 

= do. 

H I J  = '/,Ks,,[Hl, + HJJl 
K = ( 1  + K ) + A ' - A ~ K ;  1 + ~ = 1 . 7 5  

Hi, - Hjj 
A = -  (15) 

+ H]J 

Applying (15), eq 12a can be written as follows: 
K = 1 ( K  + A' - A 4 ~ )  exp[-G(R - do)] (12C) 

6 is positive. As a consequence, K increases with decreasing 
interatomic distances, as it should be. 

After introducing the corrected distance-dependent Wolfs- 
berg-Helmholz formula, we now briefly discuss the electrostatic 
two-body interaction EuB(R). In his original paper, Anderson 
introduced the electrostatic energy to describe the interaction 
E@(&) of nucleus a with the neutral atom ,!3 in a nonsymmetrical 
way using the electron density of the more electronegative atom 
only. This deficiency can easily be corrected by taking the ar- 
ithmetic mean:'6~22*23 

Equation 16 can be written as follows: 

~~ ~~ ~ ~~~ 

(22) Beran, S.; Slanina, Z.; Zidarov, D. C. Inr. J .  Quantum Chem. 1978, 
13 221 --. -- 

(23) CarM, R.; Fornos, J. M.; Hemindez, J. A.; Sanz, F .  Int. J .  Quantum 
Chem. 1977, 1 1 ,  21 1. 
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0.8 1.0 1.2 1.4 1.6 1.8 2.0 

r (C-c) A 1 

1 .o 1.5 2.0 2.5 

r (4-H) t A I 

0.9 1.1 1.3 1.5 1.7 

r (c-0) t A 1 

1 .o 1.2 1.4 1.6 1.8 

r (C-0) t A 1 
Figure 2. Theoretical results for some diatomic molecules and for the linear C02: (e-) two-body interaction E,@(R); (- - -) hEEHMO(R); (-) AEwMo(R) 
+ E&?). 

2, and 2, are the core charges of the centers a and ,f3. In the 
Appendix we show that the integrals for STO-type atomic wave 
functions can be expressed as follows: 

applying eq 12a for the off-diagonal elements and eq 17 for the 
two-body electrostatic interactions. Charge iteration was carried 
out a t  each point to generate the presented data, applying the 
parameters from ref 24 and for Ag the ones from ref 25. Slater 
exponents have been taken from Burns26 and for Ag from Basch 
and Gray.27 Mulliken population analysis was applied.28 The 
experimental data reported in Tables I and I1 originate from ref exp(-XlR) Zn ( 2 R ( , J Z w P ~ ]  P (18) 19-21 and 29, 30. 

nl nl pE1 

nl stands for the principal and the azimuthal quantum numbers, 
is the Slater exponent, and b,, is the occupation number. (24) Basch, H.; Viste, A.; Gray, H. B. J .  Chem. Phys. 1966, 44, 10. 

(25) Baranovskii. V. I.: Nikol'skii. A. B. Theor. Ekso. Khim. 1967,3,527. 
4. Comparison with Experimental Results 

Let US compare some of the theoretical results with experimental 
data to get an impression of the results that can be obtained by 

t26j Burns, G. J.  Chem. Phys. 1964, 41, 1521. 
(27) Basch, H.; Gray, H. B. Theor. Chim. Acto 1966,4, 367. Basch, H.; 

Viste, A.; Gray, H. B. Theor. Chim. Acto 1965,3,458. 
(28) Mulliken, R.  S. J .  Chem. Phys. 1955, 23, 1833. 

. 
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H20 symmetric stretch 7 j  7 
CH4 I i 

0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 

r (C-H) t A 1 

Figure 4. Theoretical results for the symmetric stretching mode of CH,: 
(e-) two-body interaction E,@); (- - -) AEEHMo(R);  (-1 AEEHMo(R) 
+ E d W .  

0.6 0.8 1.0 1.2 1.4 

r ( 0 4  t A I 

H20 asymmetric stretch 

I W  -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 

r (rt-a) t A I 
-3.1 

1 2 3 4 5 

r (CU-H) [ A 1 

Figure 5. Comparison of the CuH Morse potential with the calculated 
potential energy curve: (-e) Morse potential; (-) optimized parameters 
(1  + K = 1.57 and 8 = 0.1). 

H20 bend 

2- 

culations. The HOMO and the LUMO lead to the correct ground 
states and to the correct first electronically excited singlet states. 
This means that they represent a good basis for perturbation 
theory. Dissociation energy and bond length of CO and S i 0  are 
badly represented, and the calculated Do of Liz and Ag2 is twice 
too large. 

In the case of the polyatomic molecules in Table Ib, the 
equilibrium geometry was obtained by independently optimizing 
bond lengths and valence angles with respect to the energy min- 
imum, thus representing the true minimum on the energy hy- 
persurface. It is well-known that bond angles and first ionization 
potentials are well-represented by EHMO calculations. Inclusion 
of the t w c h d y  interaction E&?) also leads to good bond lengths. 

In Table 11, we present results calculated with 1 + K = 2.0 and 
6 = 0.35. The obtained improvement suggests that, for any given 
class of compounds, a set of ~ , 6  parameters can be found to 
describe them with good accuracy. 

It is worthwhile to study the energy components AEEHMO(R), 
E,&?), and their sum E(R)  as a function of bond distances and 
bond angles; see Figures 2-4. The five diatomics H1, C2, LiH, 
AgH, and CO demonstrate that a reasonable potential energy 
curve cannot be obtained without inclusion of the electrostatic 
two-body interaction. Similar results have already been reported 
by A n d e r s ~ n * ~ ' ~ ' ~  although our curves are more satisfactory. The 
symmetric stretching modes of CO,, H20,  and CH4 demonstrate 
the great improvement obtained by our approach, while the 
bending modes, only shown for H20 in Figure 3, are not markedly 
influenced by EaB(R). 

The quality of the calculated potential energy curves can be 
tested by comparing them with Morse potentials derived from 
experimental parameters. Such a comparison is made in Figure 
5 for CuH. The result is typical for closed-shell configurations 

- 8 - d  
60 80 100 120 140 160 

phi (H-0-H) [ A I 

Figure 3. Theoretical results for the three normal modes of HzO: (-) 
two-body interaction E,&R); (- - -) AEEHMo(R);  (-) AEEHMO(R) + 
E&). 

In Table I, we report calculated data on diverse diatomic 
molecules, applying 1 + K = 1.75 and 6 = 0.13.31 Since it is not 
possible to use charge iteration on homonuclear diatomic mole- 
cules, we have corrected for electron correlation according to 
Scheme I by adding 1.5 eV to H,. Bond lengths and first ioni- 
zation potentials are reasonably well represented by these cal- 

(29) Huber, K. P.; Herzberg, G. Constants of Diatomic Molecules; Van 
Nostrand Reinhold: London, 1979. Herzberg, G. Electronic Spectra of 
Polyatomic Molecules; Van Nostrand Reinhold: New York, 1966. Turner, 
D. W.; Baker, C.; Baker, A. D.; Brundle, C. R. Molecular Photoelectron 
Spectra; Wiley-Interscience: London, 1970. Potts, A. W.; Price, W. C. Proc. 
R.  SOC. London, A 1972, 326, 165. 

(30) Pacansky, J.; Hermann, K. J .  Chem. Phys. 1978,69,963. Colbourn, 
E. A.; Dyke, J. M.; Lee, E. P. F.; Morris, A.; Trickle, I. R. Mol. Phys. 1978, 
33, 873. 

(31) Modified version of the program ICONE (QCPE No. 344) is available 
on request. 
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of molecules. It demonstrates that Morse potentials can be 
reasonably well simulated if the parameters are optimized. Al- 
kali-metal dimers show a less satisfactory agreement while in many 
other cases it is even better. This is very interesting because it 
shows that the general behavior of the EHMO approach, including 
a two-body repulsive energy term, is correct. 
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Appendix 

the core charges, we can write 
To derive eq 17, let us start with E p ( R ) .  With 2, and 2, for 

Integrals of this kind can be written as follows:32 

bd is the occupation number of the atomic orbitals of the principal 
quantum number n and the azimuthal quantum number 1. xnl 

(32) Kauzmann, W. Quantum Chemistry; Academic Press: New York, 
1957; p 286. 

denotes the Slater-type atomic orbitals. 

m! Xm-P s x m e a x  dx = e " x C ( - l ) P  m 

p=o ( m  - p)!aP+' 

leads to 

Therefore we have 

Molecular Inversion Dynamlcs of Bis(cyclopentadieny1) beryllium Inferred from Partially 
Relaxed Spin-Spin Coupling between Carbon- 13 and Beryllium-9 

Kerry W. Nugent, James K. Beattie,* and Leslie D. Field 
School of Chemistry, The University of Sydney, Sydney, N.S. W. 2006, Australia (Received: June 3, 1988; 
In Final Form: January 23, 1989) 

The rate of molecular inversion of bis(cyc1opentadienyl)beryllium is estimated to be s-' in diethyl ether or cyclohexane 
solutions at room temperature. Inversion occurs by the interchange of the central (v5)  and peripheral bonding roles 
of the two cyclopentadienyl rings and causes the hydrogen and the carbon atoms each to be dynamically averaged in their 
respective NMR spectra. The I3C spectra display fine structure, however, which arises from incomplete decoupling from 
the quadrupolar 9Be nucleus ( I  = 3//2).  The 'H-decoupled "C spectrum is a narrow doublet which collapses to a singlet 
as the temperature is lowered, with an apparent activation energy of 5.2 kJ mol-'. The line shape is independent of the magnetic 
field strength between 2.1 and 9.4 T and does not change significantly between the two solvents. These observations lead 
to the conclusion that the relaxation of the 9Be nucleus is predominantly caused by the molecular inversion and not by molecular 
tumbling. A precise value for the inversion rate cannot be calculated in the absence of the nuclear quadrupole coupling 
constant. 

Introduction 
The IH N M R  spectrum of bis(cyclopentadieny1)beryllium 

(BeCp2) in solution is a singlet, even at  -135 O c . 1 - 3  Yet the 
molecule is polar in ~ o l u t i o n . ~  This excludes the symmetrical 

(1) Morgan, G. L.; McVicker, G. B.  J .  Am. Chem. SOC. 1968, 90, 2789. 
(2) Wong, C.; Lee, T. Y.; Lee, T. J.; Chang, T. W.; Liu, C. S .  Inorg. Nucl. 

(3) Wong, C. ;  Wang, S.  Inorg. Nucl. Chem. Lett. 1975, 11, 677. 

ferrocene structure (Figure la)  and implies that the equivalence 
of all of the Protons in the N M R  spectrum is the consequence 
of some dynamical averaging process. The 9Be N M R  spectrum 
is also a singlet a t  room temperature,' as would be expected for 
any of the structures which have been proposed for the molecule 
(Figure 1). 

Chem. Lett. 1973, 9, 667. 
(4) Fischer, E. 0.; Schreiner, S. Chem. Ber. 1959, 92, 938. 
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